Goa Vidyaprasarak Mandal's

GOPAL GOVIND POY RAITURCAR COLLEGE OF COMMERCE AND ECONOMICS FARMAGUDI, PONDA - GOA

B.C.A. UGC-CCFUP (SEMESTER-I) REGULAR EXAMINATION, October 2024

MINOR-1 MAT-111 ELEMENTARY MATHEMATICS

Duration: 2 Hrs Marks:80

Instructions:

- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.
- 3. Use of non-scientific calculators is allowed.
- Q1) Answer each of the following:

 $(8 \times 2 = 16)$

- i. Define ordered pair and cartesian product. (BL1,CO2)
- ii. Given $z_1 = 5 + 9i$ and $z_2 = 8 4i$, find $Z_1 Z_2$. (BL1,CO4)
- iii. Given f(x) = 2x + 1 and g(x) = 10x + 2 find $(g \circ f)$ (BL1,CO2)
- iv. Write the truth table for 'IF THEN'. (BL1,CO1)
- v. If $U = \{x \in \mathbb{N} \mid x \le 16\}$, $A = \{2,3,5,9,10,12,15\}$ and $B = \{3,5,6,10,12,15,16\}$ then find $A \cup B$ and $A \cap B$. (BL1,CO2)
- vi. Define the order and degree of differential equation. (BL1,CO6)
- vii. Write an example of a one-one relation and a many one relation. (BL1,CO2)
- viii. Write the conjugate of complex number z = x + yi, and hence write the conjugate of $z_1 = 12 9i$. (BL1,CO4)
- **Q2) A) i)** Prove **both** the De' Morgans Laws using $U = \{x \in \mathbb{N} \mid x \le 12\}$ as the universal set, $A = \{1,3,5,9,10\}$ and $B = \{2,4,5,9,10,12\}$. (**BL2,CO2**) (**04**)
 - **ii**) Simplify $\frac{6+2i}{8-9i}$. (BL2,CO4) (02)

OR

- **Q2) A) iii)** If $f(x) = ax^2 + b$, f(1) = 6 and f(2) = 12. Find a and b. (BL2,CO2) (04) iv) Find the dot product $A \cdot B$, if $A = 12\hat{i} + 5\hat{j} 6\hat{k}$ and $B = -3\hat{i} + 9\hat{j} 10\hat{k}$ (BL2,CO3)(02)
- **Q2) B) i)** Discuss the continuity of the function $f(x) = \begin{cases} \frac{x^2 + 2x 24}{x 4}; & x \neq 4 \\ 12; & x = 4 \end{cases}$. If the function is

discontinuous, state the type of discontinuity and make the function continuous. (BL2,CO3) (06)

ii) Verify that
$$y = x^3 + x^2 + 6$$
 is a solution of the differential equation
$$\frac{1}{(3x^2 + 2x)} \frac{dy}{dx} - 1 = 0.$$
 (BL2,CO6) (04)

Q3) A) i) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 5x - 9. Show that f is one-one and onto and find its inverse.

(BL3,CO2) (04)

ii) Find
$$(f+g)(x)$$
 if $f(x) = x^2 - 4x + 9$ and $g(x) = 6x^3 - 9x^2 + 5x + 10$. (BL3,CO3) (02)

OR

Q3) **A) iii**) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \frac{4}{9}x + 6$. Show that f is one-one and onto and find its inverse.

(BL3,CO2) (04)

iv) Find
$$f(x) \cdot g(x)$$
 if $f(x) = \frac{12}{5}x + 9$ and $g(x) = 5x - 15$. (BL3,CO3) (02)

Q3) B) i) Find the Curl of the vector
$$\vec{f} = (x^2yz, x + 12y^2 - Z, xyz^3)$$
. (BL3,CO5) (06)

ii) Find the divergence of the vector
$$\vec{g} = (x^2 - 15x + 4.5y^3 + 8x - 10.z^4 - 9z^2)$$
. (BL3,CO5) (04)

Q4) A) i) a) If
$$A = (2,4,6)$$
, $B = (3, -9,2)$ and $C = (-4,10,12)$, find $3A - 2B + C$. (BL4,CO5) (02)

b) Find the dot product
$$A \cdot B$$
 if $A = (6,9,1)$ and $B = (-5,7,2)$. (BL4,CO5) (02)

ii) Differentiate
$$f(x) = x^2 log x$$
 (BL4,CO3) (02)

OR

Q4) A) iii) Find the cross product of the vectors
$$\vec{A} = 2\hat{i} - 6\hat{j} + 5\hat{k}$$
 and $\vec{B} = -\hat{i} + 2\hat{j} + 8\hat{k}$. (BL4,CO5) (04)

iv) Compute the values of
$$g(x)$$
 at $x = 9.6$ if $g(x) = \frac{4}{5}x^2 - 10x + 19$. (BL4,CO2) (02)

- **Q4) B) i) a)** Compute $A' \cup (B \cap C)'$ if $A = \{2,3,5,6,8\}$, $B = \{1,2,6,9,10\}$ and $C = \{3,4,6,9,10\}$, and the universal set is $U = \{x \in \mathbb{N} \mid x \le 10\}$ (BL4,CO2) (03)
 - b) Transform the following statement into symbolic form and construct it's truth table.

 "I will learn guitar if and only if I have the passion for music".

 (BL4,CO2) (03)
 - ii) Prove that the following statements are logically equivalent.

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$
(BL4,CO1) (06)

Q5) A) i) Solve the following differential equation:

$$(2y^3 - 6y + 8)\frac{dy}{dx} - 9x^2 - 7x = 0$$
(BL4,CO6) (03)

ii) Evaluate
$$\lim_{x \to -9} \frac{x^2 + 4x - 45}{x + 9}$$
 (BL4,CO3) (03)

- Q5) A) iii) Form the differential equation representing the family of curves $y = ax^2 + bx$, where a and b are constants. (BL4,CO6) (03)

 - iv) Find the particular solution of the differential equation $\frac{dy}{dx} (2x^2 + 5x) = 0$,

Satisfying the initial condition y(1) = 7 if the general solution is $y(x) = \frac{2}{3}x^3 + \frac{5}{2}x^2 + c$ (BL4,CO3) (03)

- **Q5**) **B**) i) Represent the complex number z = 9 + 6i in the polar form. $[tan^{-1}(\frac{6}{9}) = 0.59]$. (BL3,CO4) (04)
 - ii) Construct truth table for the compound statement $\sim (p \land p) \rightarrow (\sim q \lor p)$. (BL3,CO1) (04)
