G.V.M.'s G.G.P.R. College of Commerce and Economics
 Farmagudi, Ponda - Goa.
 B.C.A. CBCS Semester-I End Examination, November 2022
 CORE COURSE
 CAC-103 BASIC MATHEMATICS

Duration - 2 hours
Marks-60
Instructions: 1) Question 1-6 are compulsory.
2) Figures to the right indicate full marks.

Q1] A) Fill in the blanks.
(5x1=5)

1) If ' A ' is square matrix and $|A|=0$, then ' A ' is called \qquad .
2) The scalar or dot product of the two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is defined as \qquad .
3) If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P. then geometric mean $\mathrm{b}=$ \qquad .
4) Two non zero vectors $\overrightarrow{a_{1}}$ and $\overrightarrow{a_{2}}$ are perpendicular to each other if and only if \qquad _.
5) The radian measure corresponding to the degree measure 180° is \qquad .

B) Answer the following questions.

1) Find GCD of 54 and 90 .
2) If $5,7,9,11,13,15, \ldots$. is an A.P. Find the value of ' a ' and ' d '.
3) If $f(x)=\frac{x+2}{x-1}$, find $f(2 x)$.
4) If $A=\left[\begin{array}{cc}-4 & 2 \\ 1 & 3\end{array}\right]$, find $|A|$.
5) If $x^{2 q+5}=x^{25}$, find q.

Q2) Answer the following questions.

A) Solve the following equation and also state the nature of the roots.

$$
\begin{equation*}
2 x^{2}+5 x+2=0 \tag{02}
\end{equation*}
$$

B) Find ' y ' if the distance between $A=(8,5)$ and $B=(4, y)$ is 5 units.
C) Prove that $\frac{1}{\log _{a}(a b c)}+\frac{1}{\log _{b}(a b c)}+\frac{1}{\log _{c}(a b c)}=1$.

Q3) Answer the following questions.

A) If $f(x)=x^{2}-2 x+k$ and $f(1)=3$. Find ' k ' and $f(3)$.
B) Using trigonometry prove the following identity.
$\tan (x+y)=\frac{\tan x+\tan y}{1-(\tan x \tan y)}$
C) Use De Moivre's theorem to prove that $\sin 2 \theta=2 \sin \theta \cos \theta$.

Q4) Answer the following questions.

A) If $Z_{1}=6+2 i$ and $Z_{2}=2-i$. Find $Z_{1}-Z_{2}$.
B) Find volume of sphere whose surface area is $616 \mathrm{~cm}^{2} .\left(\Pi=\frac{22}{7}\right)$
C) Solve the following system of equations using cramer's rule.

$$
\begin{equation*}
2 x-y=5 \text { and } x+y=4 \tag{05}
\end{equation*}
$$

Q5) Answer the following questions.
A) If $A=(3,4,5)$ and $B=(4,3,2)$. Find $\overrightarrow{A B}$.
B) Find area of parallelogram whose adjacent sides are given by vectors

$$
\begin{equation*}
\vec{a}=2 \hat{\imath}+3 \hat{\jmath}+\hat{k} \quad \text { and } \quad \vec{b}=-2 \hat{\imath}+\hat{\jmath}+2 \hat{k} \tag{03}
\end{equation*}
$$

C) Evaluate $\lim _{x \rightarrow 3} \frac{\sqrt{x+6}-3}{x^{2}-9}$.

Q6) Answer the following questions.
A) If $A=\left[\begin{array}{cc}3 & -1 \\ 4 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}-3 & 6 \\ 1 & 4\end{array}\right]$, find $3 A+4 B$.
B) For an A.P. $9,13,17,21,25, \ldots$ Calculate a_{20} and S_{10}.
C) Show that $A=(2,1), B=(6,5)$ and $C=(4,7)$ are vertices of right angled triangle.

