# Goa Vidyaprasarak Mandal's **Gopal Govind Poy Raiturkar College of Commerce and Economics** Farmagudi, Ponda – Goa. B.C.A. CBCS (Semester-II) End Examination, April / May 2023 **CORE COURSE CAC-107 APPLIED MATHEMATICS** Marks-60

Duration -2 hours

**Instructions:** 1) Question 1-6 are compulsory. 2) Figures to the right indicate full marks.

# Q1] A. Fill in the blanks:

- 1) An ordered selection or arrangement of r objects from a set of n objects is called \_\_\_\_\_.
- 2) Base of the hexadecimal number system is
- 3) Symbolic form of "Geeta is practical but not lazy" is \_\_\_\_\_.
- 4) Let 'n' be a nonnegative integer, then  $\sum_{k=0}^{n} \binom{n}{k} =$ \_\_\_\_\_.
- 5) The value of  $(1+0) \cdot (\overline{1+1})$  in Boolean algebra is .

# Q1] B. Answer the following questions:

- 1) If A={1, 3, 5, 7, 9, 11, 13} and B ={3, 4, 5, 6, 7} then find  $A \cap B$ .
- 2) Define Partial order relation.
- 3) If the function  $f: \mathbb{R} \to \mathbb{R}$  is defined by f(x) = 3x 4. Determine f(3).
- 4) State Pigeonhole Principle.
- 5) Draw two input NAND gate symbol.

# Q2] Answer the following questions:

- A. A bit is either 0 or 1. A byte is a sequence of 8 bits. Find
  - i) the number of bytes that can be formed from 8 bits
  - ii) the number of bytes that begin with 11 and ends with 11. (02)
- B. Prove that  $4 + 8 + 12 + \dots + 4n = 2n(n+1)$  using mathematical induction.

# (5×1=5)

# (5×1=5)

(03)

C. Find the expansion of  $(x + 2y)^5$ .

#### Q3] Answer the following questions:

- A. If  $f: \mathbb{R} \to \mathbb{R}$  and  $g: \mathbb{R} \to \mathbb{R}$  are defined by the formulas f(x) = x + 2 for all  $x \in \mathbb{R}$  and  $g(x) = x^2$  for all  $x \in \mathbb{R}$ . Then find  $(g \circ f)(x)$  and  $(f \circ g)(x)$ . (02)
- B. Show that  $4 \sqrt{2}$  is irrational.
- C. Find the output Z for given input A = 1, B = 0 from the following circuit by giving proper illustration of the gates. (05)



#### Q4] Answer the following questions:

- A. In how many ways can the letters of the word TUESDAY be arranged?How many of them begin with T and end with Y?(02)
- B. Show that the mapping  $f: \mathbb{R} \to \mathbb{R}$  defined by f(x) = 3x + 8, where  $x \in \mathbb{R}$  is invertible. Define its inverse. (03)
- C. Show that  $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$ ,  $n \ge 1$  by mathematical induction. (05)

### Q5] Answer the following questions:

A. Find symmetric difference of two sets A and B if  $A = \{1, 2, 3, 4, 5\}$  and  $B = \{3, 5, 7, 9\}$ . (02)

(03)

B. Let  $A = \{1,2,3,4\}$  and a relation on A be  $R = \{(1,1), (1,2), (2,1), (2,2), (2,3), (3,3), (4,4)\}$ . Is the given relation reflexive, symmetric, transitive? Justify your answer. (03)

(05)

C. Convert  $(6703)_8$  to its binary form.

#### Q6] Answer the following questions:

A. Let 
$$U = \{1,2,3,4,5,6,7\}$$
,  $A = \{1,2,3\}$ ,  $B = \{2,3,4\}$ .  
Verify De Morgan's law. (02)

- B. Prove that  $(a + b) \cdot (\overline{b} + c) + b \cdot (\overline{a} + \overline{c}) = a \cdot \overline{b} + a \cdot c + b$  (03)
- C. Construct the truth table for  $(p \lor q) \rightarrow (\sim p \land \sim q)$  (05)

#### \*\*\*\*\*