Gopal Govind Poy Raiturkar College of Commerce and Economics
Farmagudi, Ponda - Goa.
B.C.A. CBCS (Semester-II) End Examination, April / May 2023

CORE COURSE
CAC-107 APPLIED MATHEMATICS
Duration - 2 hours
Marks-60
Instructions: 1) Question 1-6 are compulsory.
2) Figures to the right indicate full marks.

Q1] A. Fill in the blanks:

1) An ordered selection or arrangement of r objects from a set of n objects is called \qquad .
2) Base of the hexadecimal number system is \qquad .
3) Symbolic form of "Geeta is practical but not lazy" is \qquad .
4) Let ' n ' be a nonnegative integer, then $\sum_{k=0}^{n}\binom{n}{k}=$ \qquad .
5) The value of $(1+0) \cdot(\overline{1+1})$ in Boolean algebra is \qquad .

Q1] B. Answer the following questions:

1) If $\mathrm{A}=\{1,3,5,7,9,11,13\}$ and $\mathrm{B}=\{3,4,5,6,7\}$ then find $A \cap B$.
2) Define Partial order relation.
3) If the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=3 x-4$. Determine $f(3)$.
4) State Pigeonhole Principle.
5) Draw two input NAND gate symbol.

Q2] Answer the following questions:
A. A bit is either 0 or 1 . A byte is a sequence of 8 bits. Find
i) the number of bytes that can be formed from 8 bits
ii) the number of bytes that begin with 11 and ends with 11 .
B. Prove that $4+8+12+\cdots+4 n=2 n(n+1)$ using mathematical induction.
C. Find the expansion of $(x+2 y)^{5}$.

Q3] Answer the following questions:

A. If $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are defined by the formulas $f(x)=x+2$ for all $x \in \mathbb{R}$ and $g(x)=x^{2}$ for all $x \in \mathbb{R}$. Then find $(g \circ f)(x)$ and $(f \circ g)(x)$.
B. Show that $4-\sqrt{2}$ is irrational.
C. Find the output Z for given input $A=1, B=0$ from the following circuit by giving proper illustration of the gates.

Q4] Answer the following questions:

A. In how many ways can the letters of the word TUESDAY be arranged? How many of them begin with T and end with Y ?
B. Show that the mapping $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=3 x+8$, where $x \in \mathbb{R}$ is invertible. Define its inverse.
C. Show that $1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}, \mathrm{n} \geq 1$ by mathematical induction.

Q5] Answer the following questions:

A. Find symmetric difference of two sets A and B if $A=\{1,2,3,4,5\}$ and $B=\{3,5,7,9\}$.
B. Let $A=\{1,2,3,4\}$ and a relation on A be $R=\{(1,1),(1,2),(2,1),(2,2),(2,3),(3,3),(4,4)\}$. Is the given relation reflexive, symmetric, transitive? Justify your answer.
C. Convert (6703) $)_{8}$ to its binary form.

Q6] Answer the following questions:

A. Let $U=\{1,2,3,4,5,6,7\}, A=\{1,2,3\}, B=\{2,3,4\}$.

Verify De Morgan's law.
B. Prove that $(a+b) \cdot(\bar{b}+c)+b \cdot(\bar{a}+\bar{c})=a \cdot \bar{b}+a \cdot c+b$
C. Construct the truth table for $(p \vee q) \rightarrow(\sim p \wedge \sim q)$

