Pg 1 of 2
Goa Vidyaprasarak Mandal's
GOPAL GOVIND POY RAITURCAR COLLEGE OF COMMERCE AND ECONOMICS, PONDA-GOA

B.C.A. (SEMESTER -II) EXAMINATION, APRIL 2018 DISCRETE MATHEMATICS

Duration: 2 Hours

Marks: 50
Instructions: All questions are compulsory.
Answer the following questions. Justify your answer.
Q. 1

1(a) Let p and q be the propositions given as p : It is below freezing and q : It is snowing.
Write the below proposition using p, q and logical connectives.
It is not below freezing and it is not snowing
1(b) State the converse, contrapositive and inverseof the conditional statement given below.
I come to class whenever there is going to be a quiz
1(c) Find the sets A and B if $\mathrm{A}-\mathrm{B}=\{1,5,7,8\}, \mathrm{B}-\mathrm{A}=\{2,10\}$, and $\mathrm{A} \cap B=\{3,6,9\}$
1(d) How many permutations of $\{a, b, c, d, e, f, g\}$ end with a ?
1(e) List the ordered pairs in the relation from $A=\{0,1,2,3,4\}$ to $B=\{0,1,2,3\}$
where (a, b) is a member of R if and only if $a+b=4$.
1(f) List the ordered pairs in the equivalence relation produced by the partition
$\{0\},\{1,2\}$, and $\{3,4,5\}$, of the set $\{0,1,2,3,4,5\}$
$1(\mathrm{~g}) \quad$ Find the sum-of- products and product-of- sums expansions of the boolean function $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x}+\mathrm{y}+\mathrm{z}$
Q.2. (i) Show that $(\mathrm{p} \rightarrow \mathrm{q}) \rightarrow \mathrm{r}$ and $\mathrm{p} \rightarrow(\mathrm{q} \rightarrow \mathrm{r})$ are not logically equivalent.
(ii) Determine whether $(\neg \mathrm{q} \wedge(\mathrm{p} \rightarrow \mathrm{q})) \rightarrow \neg \mathrm{p}$ is a tautology
(iii) Identify p and q in each of these sentences (a) It snows whenever the wind blows from north east. (b) The apple trees will bloom if it stays warm for a week.
(c) Jan will go swimming unless the water is too cold.
Q.3. (i) Let $f(x)=\left\lfloor x^{2} / 3\right\rfloor$. Find $f(S)$ if $S=\{-2,-1,0,1,2\}$
(ii) Using mathematical induction, prove that for every positive integer n ,

$$
\begin{equation*}
1 \cdot 2+2 \cdot \cdot 3+\ldots+n(n+1)=n(n+1)(n+2) / 3 \tag{3}
\end{equation*}
$$

(iii) Let $\mathrm{X}=\{-1,0,1,2\}$, and $\mathrm{Y}=\{-4,-2,0,2\}$, define the function $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}$ as $F(x)=x^{2}-x$,
(a) Determine whether F is a function,
(b) Check whether F is 1-1, onto. Justify your answer.
(iv) (a) Find the coefficient of x^{9} in the expansion of (2-x) ${ }^{19}$.
(b) Find the coefficient of $x^{101} y^{99}$ in the expansion of $(2 x-3 y)^{200}$

Pg 2 of 2

Q.4. (i) For the following relation on the set $\{1,2,3,4\}$, determine whether it is reflexive, whether it is symmetric, whether it is anti-symmetric, and whether it is asymmetric.

$$
\begin{equation*}
\{(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)\} \tag{4}
\end{equation*}
$$

(ii) How many permutations are possible from the letters ORONO.
(iii) Apply Warshall's algorithm to the following relation on the set $\{1,2,3,4\}$ to determine whether it is transitive or not. Perform one iteration.

$$
\begin{equation*}
\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\} \tag{5}
\end{equation*}
$$

Q.5. (i) Construct circuit that produce the output $\mathrm{x}(\mathrm{y}+\mathrm{z})$
(ii) Find the output of the circuit given below.

