Pg 1 of 2

Goa Vidyaprasarak Mandal's

GOPAL GOVIND POY RAITURCAR COLLEGE OF COMMERCE AND ECONOMICS, PONDA-GOA

B.C.A. (SEMESTER –II) EXAMINATION, APRIL 2018 DISCRETE MATHEMATICS

Duration: 2 Hours Ma		
Instru	ctions: All questions are compulsory.	
Answ	er the following questions. Justify your answer.	
Q.1		
1(a)	Let p and q be the propositions given as p: It is below freezing and q: It is snowin Write the below proposition using p, q and logical connectives. It is not below freezing and it is not snowing	g. (1)
1(b)	State the converse, contrapositive and inverseof the conditional statement given be	elow.
	I come to class whenever there is going to be a quiz	(3)
1(c)	Find the sets A and B if A-B= $\{1, 5, 7, 8\}$, B-A= $\{2, 10\}$, and A \cap B= $\{3, 6, 9\}$	(1)
1(d)	How many permutations of $\{a,b,c,d,e,f,g\}$ end with a?	(1)
1(e)	List the ordered pairs in the relation from $A = \{0,1,2,3,4\}$ to $B = \{0,1,2,3\}$	
	where (a,b) is a member of R if and only if a+b=4.	(1)
1(f)	List the ordered pairs in the equivalence relation produced by the partition	
	$\{0\},\{1,2\}, \text{and}\{3,4,5\}, \text{ of the set }\{0,1,2,3,4,5\}$	(1)
1(g)	Find the sum-of- products and product-of- sums expansions of the	
	boolean function $F(x,y,z) = x+y+z$	(2)
Q.2.	(i) Show that $(p \rightarrow q) \rightarrow r$ and $p \rightarrow (q \rightarrow r)$ are not logically equivalent.	(5)
(ii)	Determine whether $(\neg q \land (p \rightarrow q)) \rightarrow \neg p$ is a tautology	(3)
(iii)	Identify p and q in each of these sentences (a) It snows whenever the wind blows from north east. (b) The apple trees will bloom if it stays warm for a week. (c) Ian will go swimming unless the water is too cold	(3)
Q. 3.	(i) Let $f(x) = \lfloor x^2/3 \rfloor$. Find $f(S)$ if $S = \{ -2, -1, 0, 1, 2 \}$	(2)
	(ii) Using mathematical induction, prove that for every positive integer n,	
	$1 \cdot 2 + 2 \cdot .3 + + n(n+1) = n(n+1)(n+2)/3$	(3)
	(iii) Let X= { -1,0,1,2 }, and Y= { -4,-2,0,2 }, define the function F: $X \to Y$ as	
	$F(x) = x^2 - x$,	
	(a) Determine whether F is a function,(b) Check whether F is 1-1, onto. Justify your answer.	(4)
	(iv) (a) Find the coefficient of x^9 in the expansion of (2-x) ¹⁹ .	(2)
	(b) Find the coefficient of $x^{101}y^{99}$ in the expansion of $(2x-3y)^{200}$	(3)

Pg 2 of 2

Q.4. (i) For the following relation on the set $\{1,2,3,4\}$, determine whether it is reflexive, whether it is symmetric, whether it is anti-symmetric, and whether it is asymmetric.

	$\{(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)\}$	(4)
(ii)	How many permutations are possible from the letters ORONO.	(1)
	and the second s	
(iii)	Apply Warshall's algorithm to the following relation on the set {1,2,3,4}	
	to determine whether it is transitive or not. Perform one iteration.	
	$\{ (1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4) \}$	(5)

Q.5. (i)Construct circuit that produce the output x (y+z)(2)(ii)Find the output of the circuit given below.(3)

r
