Goa Vidyaprasarak Mandal's
 GOPAL GOVIND POY RAITURCAR COLLEGE OF COMMERCE AND ECONOMICS, PONDA-GOA

B.C.A (SEMESTER-II) SUPPLEMENTARY EXAMINATION, MAY/JUNE 2019 BCA 204 DISCRETE MATHEMATICS

Instructions:

1. All questions are compulsory. However internal choice has been provided for Q. 2 - Q. 5
2. Figures to right indicate full marks.
3. Use of non-programmable calculators are allowed.

Q 1) Answer the following.
$(10 \times 1=10)$
(a) If $X=\{1,2,3,4\}$ and $A=\{2,3,4\}$ then $A^{C}=$ \qquad .
(b) If $\mathrm{A}=\{\mathrm{a}\}$ and $\mathrm{B}=\{1,3\}$ then $\mathrm{A} \times \mathrm{B}=$
(c) L^{+}is given by the formula \qquad .
(d) $P_{3}^{5}=$ \qquad .
(e) If $f(x)=2 x$ and $g(x)=\log x$, then $(f \circ g)(x)=$ \qquad
(f) Define string over an alphabet σ.
(g) Base for hexadecimal system is \qquad .
(h) $(72)_{10}$ is equivalent to \qquad in binary form.
(i) The logic symbol for AND gate is \qquad .
(j) Idempotent law on a Boolean algebra is given by \qquad .

Q 2)Answer the following.

(a) Convert (3FED) ${ }_{16}$ to its decimal equivalent.
(b)Prove that relation R on the set of integers \mathbb{Z} defined as
$\mathrm{R}=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}-\mathrm{y}$ is divisible by $3, \mathrm{x}, \mathrm{y} \in \mathbb{Z}$.
(c) If $f(x)=\frac{2 x+1}{2 x-1}$ then find $f(3 x)$.

OR

(d)Convert (643.25) ${ }_{10}$ to binary fractions.
(e) Let $A=\{1,2,3\}$ and a relation on A be
$\mathrm{R}=\{(1,1),(1,2),(2,1),(2,2),(2,3),(3,3)\}$. Prove that the relation R is reflexive,
not symmetric and not transitive.
(f) If $f(x)=3 x-1 \& g(x)=x^{2}+1$ find $f(g(x))$.

Q 3) Answer the following.
(a)Prove that $(p \rightarrow q) \equiv[(\sim q) \rightarrow(\sim p)]$.
(b)Find the coefficient of $x^{2} y^{3}$ in the expansion of $(2 x+y)^{5}$.
(c) Prove by mathematical induction that

$$
\begin{equation*}
1+3+6+\cdots+\frac{n(n+1)}{2}=\frac{n(n+1)(n+2)}{6} \tag{4}
\end{equation*}
$$

OR
(d) Find the truth values for $(p \vee q) \leftrightarrow[q \vee(r \rightarrow p)]$.
(e) Find the $5^{\text {th }}$ term in the expansion of $\left(2 x^{2}+\frac{3}{2 x}\right)^{7}$.
(f) Prove by mathematical induction that

$$
\begin{equation*}
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6} \tag{3}
\end{equation*}
$$

Q 4) Answer the following.

(a) A committee of 10 is to be formed from 5 women and 7 men. In how many ways this can be done if committee contains
(i) 3 women
(ii) At most 2 men
(b)Define finite state machine and write down its 3 major features.

OR
(c) A club has 5 girls and 7 boys. If 4 persons out of these to be selected, find out the total number of choices if
(i) 2 boys and 2 girls are to be selected
(ii) At most 1 girl is to be selected
(d) Find the language $\mathrm{L}(\mathrm{G})$ generated by the grammar with $V=\{S, A\} \&$

$$
\begin{equation*}
\sigma=\{x, y, z\} \text { and production } P=\{S \rightarrow x S y, x S \rightarrow A y, A x y \rightarrow z\} \tag{5}
\end{equation*}
$$

Q 5) Answer the following.

(a) If $A=\{a, b, c, d\} \& B=\{b, d, e\}$ find
(i) $(A \cap B) \times(A-B)$
(ii) $A \times(A-B)$
(iii) $(A-B) \cup(B-A)$
(b) Draw the symbol for XOR gate and write its truth table.

OR

(c) If $X=\{A, B, C, D, E, G, H, I, L, M, N, O, R, S, T, Y, Z\}, B=\{T, H, E, O, R, Y\} \&$ $C=\{T, H, E, O, R, M, S\}$ then verify that
(i) $B-C=\left(B^{\mathrm{C}} \cup C\right)^{\mathrm{C}}$
(ii) Find $A \cap B$
(d) Write the truth table for NAND gate and draw its symbol.

