Goa Vidyaprasarak Mandal's GOPAL GOVIND POY RAITURCAR COLLEGE OF COMMERCE AND ECONOMICS, PONDA-GOA B.C.A (SEMESTER-II) SUPPLEMENTARY EXAMINATION MAY/JUNE 2016 DATA STRUCTURES

Duration: 2 Hrs	Marks: 5	50
INSTRUCTIONS: 1) All questions are compulsory. 2) Figures to right indicate marks.		
 Q.1.Define the following. i. Data Structure. ii. Almost Complete Binary tree. iii. Circular Linked List . iv. Sorting. V. Queue. 	(5*2=1	10)
Q.2.A. State the primitive operations on a binary tree.Q.2.B. State and explain Primitive operations on Queues.Q.2.C. Write a C program to validate an expression for parenthesis using	j stack.	(2) (3) (5)
Q.3.A. Why stack is called a pushdown list? Q.3.B. Write C implementation for deleteafter(p,x) of Linear Linked List. Q.3.C. Write an algorithm to concatenate 2 linked list.		(2) (3) (5)
Q.4.A. What is a balanced tree? Q.4.B. Discuss the efficiency of Bubble Sort. Q.4.C. Explain Heapsort.		(2) (3) (5)
Q.5.A. Write C implementation for remove(q,x) for queue data structure. Q.5.B. Write an algorithm for left rotation on a tree. Q.5.C. Implement primitive operations of a graph.		(2) (3) (5)

XXXXXXXXXXX