Goa Vidyaprasarak Mandal's

GOPAL GOVIND POY RAITURCAR COLLEGE OF COMMERCE AND ECONOMICS, PONDA-GOA

B.C.A. (SEMESTER -IV) EXAMINATION, APRIL 2018 DATA ANALYSIS AND STATISTICAL TECHNIQUES

Duration: 2 Hours

Marks: 50

Instructions: Standard normal distribution table and \mathbf{t}-distribution table will be given.
Answer the following questions. Justify your answer.
Q.1.(a)
(i) From a bag containing 3 red and 2 black objects, 2 objects are drawn at random.

Find the probability that they are of the same color.
(ii) When A and B are two mutually exclusive events such that $P(A)=1 / 2$ and $P(B)=1 / 3$, find $P(A \cup B)$.
(iii) If $\mathrm{P}(\mathrm{A})=1 / 3, \mathrm{P}(\mathrm{B})=3 / 4$ and $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=11 / 12$, find $\mathrm{P}(\mathrm{A} / \mathrm{B})$.
(iv) If $\mathrm{P}(\mathrm{A})=.65, \mathrm{P}(\mathrm{B})=.4$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=.24$, can A and B be independent events?
(v) Using Poisson distribution formula, find $\mathrm{P}(\mathrm{x}=2)$ for $\lambda=2.5$
(vi) Find the value of t for the t distribution for the following data,

Area in the right tail $=0.5$ and $\mathrm{df}=9$
(vii) Find the area from the t distribution table for the data given as $\mathrm{t}=2.467$ and $\mathrm{df}=28$

1. (b) If $A \subset B, P(A)=1 / 4$ and $P(B)=1 / 3$, find $P(A / B)$ and $P(B / A)$.
Q.2.
(i) A factory production line is manufacturing bolts using three machines, A, B and C. Of the total output, machine A is responsible for 25%, machine B for 35% and machine C for the rest. It is known from previous experience with the machines that 5% of the output from machine A is defective, 4% from machine B and 2% from machine C . A bolt is chosen at random from the production line and found to be defective. What is the probability that it came from

(a) machine A (b) machine B (c) machine C ?

(ii) Fit a straight line of the form $\mathrm{x}=\mathrm{a}+\mathrm{by}$ to the following data. Here y is independent variable and x is dependent variable.

x	-16	-11	-6	-1	14	19	$23 \cdot 5$	$29 \cdot 5$
y	-4	-3	-2	-1	2	3	4	5

Calculate linear correlation coefficient for the above data.
Q.3.
(i) Find the value of z so that the area under the standard normal curve,

> (a)From 0 to z is .4772 and z is positive (b) from 0 to z is approximately .4785 and z is negative.
(ii) For the data given below

$$
15,9,8,7,6,9,14,3,6,9
$$

Calculate median and mode. Determine the values of three quartiles and the inter quartile range.
Q.4.
(i) (a) For a data set obtained from a sample, $n=20$ and $\bar{x}=20.4$. It is known that $\sigma=2.3$. Make a 99% confidence interval for μ.
(b) Suppose for a sample, $\overline{\mathrm{x}}=68.5$ and $\mathrm{s}=8.9$. Construct a 95% confidence interval for μ, assuming that $\mathrm{n}=16$.
(ii) Given the following points,

2, 3, 4, 10, 11, 12,20, 25,30,
assume $\mathrm{k}=2$ and the initial two clusters are $(2,3)$ and $(4,10,11,12,20,25,30)$. Determine the clusters obtained using k-means algorithm after one iteration.
Q.5.
(i) For the data, $7,8,14,7,20,12$, list all possible samples of size five that can be selected from this population. Calculate the mean for each of those samples, write the sampling distribution of \bar{x}.
(ii) The following transaction table is given

TID	Items bought
1	a,pe,pi
2	$\mathrm{o}, \mathrm{a}, \mathrm{m}, \mathrm{t}$
3	$\mathrm{a}, \mathrm{pe}, \mathrm{t}, \mathrm{c}$
4	$\mathrm{a}, \mathrm{t}, \mathrm{pe}, \mathrm{o}$

Find one item set of size 2 and 3 having minimum support 50%. Using the large item set of size 3, determine two association rules with minimum confidence 50%.

