Goa Vidyaprasarak Mandal's
 GOPAL GOVIND POY RAITURCAR COLLEGE OF COMMERCE AND ECONOMICS, PONDA-GOA

B.C.A. CBCS (SEMESTER-I) EXAMINATION, OCTOBER 2019

BCA 104 BASIC MATHEMATICS
Duration :2 hours
Marks: 60
Instructions: i) Questions 1-6 are compulsory.
ii) Figures to right indicate full marks.

Q1. A] Fill in the blanks:
a) LCM of $80 \& 64$ is \qquad .
b) If $A=\left[\begin{array}{ll}2 & -1 \\ 4 & -2\end{array}\right]$, then $|A|=$ \qquad .
c) The scalar product of the two vectors $\bar{a}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath} \& \bar{b}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}$ is defined as \qquad .
d) For a G.P $1,3,9,27 \ldots$ the value of a and r is \qquad \& \qquad .
e) The circumference of a circle with radius 2 cm is \qquad .
B. Fill in the blanks:
a) Common difference of the sequence $7,10,13,16, \ldots$ is \qquad .
b) If the edge of a cube is 3 cm then the surface area of cube is \qquad .
c) If $\tan \theta=\frac{5}{12}$ then $\operatorname{cosec} \theta=$ \qquad .
d) The distance between the point $A(0,6)$ from origin is \qquad .
e) Area of triangle with $\bar{a} \& \bar{b}$ as the sides is \qquad .

Q2] Answer the following questions:
A. What is fourth proportional to $5,8,15$?
B. A solid sphere of radius 5 cm is mounted on a cube of side 9 cm . Find the total volume of the structure.
C. If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ find $A^{2}-5 A-2 \mid$ where $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.

OR
D. Solve the following equations using Cramer's rule

$$
\begin{gather*}
x+2 y+z=4 \tag{5}\\
2 x-y+z=-1 \\
x+y-z=4
\end{gather*}
$$

Q3] Answer the following questions
A. Find x, if $\left|\begin{array}{ccc}x & 2 & 1 \\ 3 & 0 & 1 \\ 4 & -5 & 2\end{array}\right|=0$.
B. For an A.P 2, 5, 8, 11, 14, ...Calculate T_{10} and S_{10}
C. Use De moivre's theorem to prove the following
$\sin 3 \theta=3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta$
D. Find the fifth root of $2+2 \sqrt{3}$ i.

Q4] Answer the following questions:

A. If $Z_{1}=1+i \& Z_{2}=1-i$, find $\frac{Z_{1}}{Z_{2}}$
B. The diameter of cone is 14 mts and its slant height is 9 mts . Find the area of curved curved surface.
C. Evaluatelim ${ }_{x \rightarrow 3}\left(\frac{1}{x-3}-\frac{3}{x^{2}-3 x}\right)$.

OR

D. Discuss the continuity of the following functions at $x=1$

$$
f(x)= \begin{cases}x^{2}+1, & 0 \leq x<1 \tag{5}\\ 3 x+1, & 1 \leq x<2\end{cases}
$$

Q5] Answer the following questions:

A. If $f(x)=x^{2}-2 x+5,0 \leq x<5$. Find $\mathrm{f}(2), \mathrm{f}(3), \mathrm{f}(-4), \mathrm{f}(5)$ if they exist.
B. Using trigonometry, prove the following identity.

$$
\begin{equation*}
\frac{\tan ^{2} \theta+1}{\sec ^{2} \theta-1}=\operatorname{cosec}^{2} \theta \tag{3}
\end{equation*}
$$

C. Show that $\frac{3\left(2^{n+1}\right)+2^{n}}{2^{n+2}-2^{n-1}}=2$

OR

D. Solve the following equation.

$$
\begin{equation*}
\log _{10} x+\log _{10}(x-21)=2 \tag{5}
\end{equation*}
$$

Q6] Answer the following questions:

A. Solve the following equation and also state the nature of the roots. $x^{2}-4 x-8=0$.
B. Find the area of triangle with $\bar{a}=\hat{\imath}-2 \hat{\jmath}+3 \mathrm{k}$ and $\bar{b}=3 \hat{\imath}-2 \hat{\jmath}+\mathrm{k}$.
C. Find the equation of the line through the point of intersection of $x+2 y-4=0, x-3 y+1=0$ and also through the midpoint of the segment joining $(2,5) \&(4,3)$.

OR

D. Show that $(2,-1),(0,1),(6,5)$ and $(8,3)$ are the vertices of a parallelogram.

