Pg 1 of 3

Goa Vidyaprasarak Mandal's
 GOPAL GOVIND POY RAITURCAR COLLEGE OF COMMERCE AND ECONOMICS, PONDA-GOA
 B.C.A (SEMESTER-I) EXAMINATION, OCTOBER 2018 BCA 104 BASIC MATHEMATICS

Duration : 2 hours
Marks: 50

Instructions: (1) Attempt all the questions.
(2) Figures to right indicate full marks.
Q. 1 Fill in the blanks:
a) $\log _{a}(m n)=$ \qquad where, $\mathrm{m}, \mathrm{n}, \mathrm{a}>1$ and $\mathrm{a} \neq 1$.
b) If $5^{\mathrm{a}}=125$ then, $a=$ \qquad
c) Area of a circle of radius 5 cm is given by \qquad cm^{2}
d) If a, b, c are in arithmetic progression, then $\mathrm{b}=$ \qquad
e) Let ${ }^{z=3+4 i}$, then $\bar{z}=$ \qquad
f) If $f(x)=\frac{4 x-1}{x-1}$, then $f(3 x)=$ \qquad
g) If $4: 7:: x: 35$, then
$x=$.
h) The factors of $x^{2}+3 x+2$ are \qquad and
i) The greatest common divisor (g.c.d) of 37 and 249 is
j) If $\log 2=0.3010$, then $\log 8=$ \qquad
Q. 2
A. Prove that the vectors $\vec{a}=\hat{\imath}+2 \hat{\jmath}+\hat{k}$ and $\vec{b}=\hat{\imath}+\hat{\jmath}+3 \hat{k}$ are perpendicular to each other.
B. The diameter of cone is 14 m and its slant height is 9 m . Find its curved surface area and total surface area.
C. If $A=\left[\begin{array}{ll}2 & 1 \\ 2 & 4\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 2 \\ -3 & 0\end{array}\right]$. Find $A^{2}-3 B+2 I$

OR

Q.II

a. Find the area of the parallelogram whose adjacent sides are given by vectors

$$
\begin{equation*}
\vec{a}=\hat{\imath}-2 \hat{\jmath}+3 \hat{k} \text { and } \quad \vec{b}=3 \hat{\imath}-2 \hat{\jmath}+\hat{k} \tag{2}
\end{equation*}
$$

b. The side of a square field is 89 meters. By how much square meter does its area fall short of hectare? $\left(\right.$ Given: A hectare $=10000 \mathrm{mt}^{2}$)

Pg 2 of 3

c. Solve the following system of equations by using Cramer's rule.

$$
\begin{align*}
5 x+3 y+z & =16 \tag{5}\\
2 x+y+3 z & =19 \\
x+2 y+4 z & =25
\end{align*}
$$

Q. 3

A. Find $\vec{a} \times \vec{b}$ if $\vec{a}=2 \hat{l}+3 \hat{j}+6 \hat{k}$ and $\vec{b}=3 \hat{l}-6 \hat{j}+2$
B. If for an A.P. $d=10$ and $S_{30}=4500$, find a and T_{30}.
C. Evaluate the following limit

$$
\begin{equation*}
\lim _{x \rightarrow 2} \frac{x^{5}-32}{x^{2}-4} \tag{5}
\end{equation*}
$$

OR

Q.III

a. Find a unit vector perpendicular to both the vectors $\vec{a}=4 \hat{l}-\hat{\jmath}+3 \hat{k}$

$$
\begin{equation*}
\text { and } \vec{b}=-2 \hat{l}+\hat{\jmath}-2 \hat{k} \tag{2}
\end{equation*}
$$

b. If a, b, c are in A.P, prove that $3 a^{2}-4 b^{2}+c^{2}=2 a(a-c)$.
c. Discuss the continuity of the following function at $\mathrm{x}=1$.

$$
f(x)=\left\{\begin{array}{l}
2 x+3,0 \leq x<1 \tag{5}\\
3 x+2,1 \leq x<2
\end{array}\right.
$$

Q. 4

A. Using trigonometry, prove the identity

$$
\begin{equation*}
\frac{\cot \theta+\operatorname{cosec} \theta}{1+\cos \theta}=\operatorname{cosec} \theta \tag{3}
\end{equation*}
$$

B. Use De Moivre's theorem to prove the following

$$
\begin{equation*}
\sin 2 \theta=2 \sin \theta \cos \theta \tag{3}
\end{equation*}
$$

C. Find the coordinates of P dividing AB externally in the ratio 5:2 where $\mathrm{A}=(0,-5)$ and $\mathrm{B}=(7,9)$

OR

Q.IV

a. Using trigonometry, prove the following identity
$\cos 2 \theta=1-2 \sin ^{2} \theta$
b. Use De Moivre's theorem to prove the following

Pg 3 of 3

c. Find the equation of the line through the point of intersection of $x+2 y-4=0, x-3 y+1=0$ and also through the mid-point of the segment joining $(2,5)$ and $(4,3)$
Q. 5
A. If $f(x)=a \sin (\log x)$, prove that $x^{2} f^{\prime \prime}(x)+x f(x)+f(x)=0$
B. Evaluate $\int_{0}^{\log 3} \frac{e^{x}}{1+e^{x}} d x$

OR

Q.V
a. Examine the function $f(x)=x^{2}+2 x$ for maxima or minima.
b. Differentiate $\mathrm{y}=\left(\mathrm{x}^{2}-3 \mathrm{x}+5\right)^{10}$ with respect to x.
c. Evaluate $\int_{0}^{2}\left(\sin x-2^{x}\right) d x$.(5)

