Pg 1 of 3

Goa Vidyaprasarak Mandal's GOPAL GOVIND POY RAITURCAR COLLEGE OF COMMERCE AND ECONOMICS, PONDA-GOA B.C.A (SEMESTER-I) EXAMINATION, OCTOBER 2018 BCA 104 BASIC MATHEMATICS

Duration : 2 hours Marks: 50 _____ **Instructions:** (1) Attempt all the questions. (2) Figures to right indicate full marks. **Q.1** Fill in the blanks: (10x1 = 10)a) $log_a(mn) = \dots$ where, m,n,a >1 and a $\neq 1$. b) If $5^{a} = 125$ then, $a = \dots$ c) Area of a circle of radius 5 cm is given bycm² d) If *a*, *b*, *c* are in arithmetic progression, then b = e) Let z = 3 + 4i, then $\overline{z} = \dots$ f) If $f(x) = \frac{4x-1}{x-1}$, then $f(3x) = \dots$ g) If 4:7::*x*:35, then $\chi = \dots$ h) The factors of $x^2 + 3x + 2$ are and i) The greatest common divisor (g.c.d) of 37 and 249 is..... j) If $\log 2 = 0.3010$, then $\log 8 = \dots$

Q.2

A. Prove that the vectors $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + \hat{j} + 3\hat{k}$ are perpendicular to each other. (2)

- B. The diameter of cone is 14m and its slant height is 9m. Find its curved surface area and total surface area.
 (3)
- C. If $A = \begin{bmatrix} 2 & 1 \\ 2 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 \\ -3 & 0 \end{bmatrix}$. Find A²-3B+2I (5)
 - OR

Q.II

- a. Find the area of the parallelogram whose adjacent sides are given by vectors $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}_{and}$ $\vec{b} = 3\hat{i} - 2\hat{j} + \hat{k}$ (2)
- b. The side of a square field is 89 meters. By how much square meter does its area fall short of hectare? (Given: A hectare = $10000mt^2$) (3)

c. Solve the following system of equations by using Cramer's rule. (5) 5x + 3y + z = 162x + y + 3z = 19

$$2x + y + 3z = 19$$

 $x + 2y + 4z = 25$

Q.3

$\vec{b} = 3\hat{\imath} - 6\hat{j} + 2$	(2)
	$\vec{b} = 3\hat{\imath} - 6\hat{j} + 2$

- B. If for an A.P. d=10 and $S_{30}=4500$, find a and T_{30} . (3)
- C. Evaluate the following limit $\lim_{x \to 2} \frac{x^5 - 32}{x^2 - 4}$ (5)

OR

Q.III

a.	Find a unit vector perpendicular to both the vectors $\vec{a} = 4\hat{i} - \hat{j} + 3\hat{k}$	
	and $\vec{b} = -2\hat{\imath} + \hat{\jmath} - 2\hat{k}$	(2)

- b. If *a*, *b*, *c* are in A.P, prove that $3a^2 4b^2 + c^2 = 2a(a c)$. (3)
- c. Discuss the continuity of the following function at x=1.

$$f(x) = \begin{cases} 2x+3, 0 \le x < 1\\ 3x+2, 1 \le x < 2 \end{cases}$$
(5)

Q.4

A. Using trigonometry, prove the identity (3)

$$\frac{\cot\theta + \csc\theta}{1 + \cos\theta} = \csc\theta$$

B. Use De Moivre's theorem to prove the following (3)

 $\sin 2\theta = 2\sin\theta\cos\theta$

C. Find the coordinates of P dividing AB externally in the ratio 5:2 where A=(0,-5) and B=(7,9) (4)

OR

Q.IV

- a. Using trigonometry, prove the following identity (3) $\cos 2\theta = 1 - 2 \sin^2 \theta$
- b. Use De Moivre's theorem to prove the following (3) $\cos 3\theta = 4\cos^2\theta - 3\cos\theta$

c. Find the equation of the line through the point of intersection of x + 2y - 4 =0, x - 3y + 1 =0 and also through the mid-point of the segment joining (2,5) and (4,3)

Q.5

A. If $f(x) = a \sin(\log x)$, prove that $x^2 f''(x) + x f(x) + f(x) = 0$ (5)

B. Evaluate
$$\int_0^{\log 3} \frac{e^x}{1+e^x} dx$$
 (5)

OR

Q.V

a. Examine the function $f(x) = x^2 + 2x$ for maxima or minima. (3)

(2)

- b. Differentiate $y = (x^2 3x + 5)^{10}$ with respect to x.
- c. Evaluate $\int_0^2 (sinx 2^x) dx.(5)$

XXXXXXXXXXXXXX