Goa VidyaprasarakMandal's
 GOPAL GOVIND POY RAITURCAR COLLEGE OF COMMERCE AND
 ECONOMICS, PONDA-GOA
 B.C.A. (SEMESTER-I) EXAMINATION (NCBCS), OCTOBER 2019 BCA 104 BASIC MATHEMATICS

Duration : 2 hours
Instructions: 1. Attempt all questions
2. Figures to the right indicate full marks.

Q.1. Fill in the blanks:

a) Prime factorization of 972 is \qquad
b) If $f(x)=5 x^{2}-2 x$, then $\int_{1}^{2} f(x) d x=$ \qquad .
c) If $\sin \frac{3}{5}$ and $\cos \frac{4}{5}$, then $\tan \theta=$ \qquad .
d) If $y=x^{4}-5 x^{2}$, then $y^{\prime}=$ \qquad .
e) $\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}$ \qquad .
f) $\operatorname{gcd}(68,154)=$ \qquad .
g) Area of circle with centre 2 cm is given by \qquad cm^{2}.
h) In an A.P. $a=5$ and $d=4$, then $S_{6}=$ \qquad .
i) Let $\left[\begin{array}{ccc}1 & -3 & -2 \\ 4 & 0 & 7 \\ 5 & 2 & 8\end{array}\right]$, then $A^{\prime}=$ \qquad .
j) Let $Z_{1}=3-4 i$ and $Z_{2}=-7+8 i$, then $Z_{1}+\overline{Z_{2}}=$ \qquad .

Q.2. Answer the following questions.

a) Find the area of a parallelogram whose adjacent sides are $3 \hat{\imath}+4 \hat{\jmath}-\widehat{k}$
and $4 \hat{\imath}-2 \hat{\jmath}+5 \hat{k}$
b) Use De Moivre's theorem to prove that $\sin 2 \theta=2 \sin \theta \cos \theta$.
c) If $=\left[\begin{array}{cc}5 & 7 \\ 4 & -1\end{array}\right]$, find $4 A^{2}+3 A-2 I$.

OR
d) Find the area of triangle whose sides are $2 \hat{\imath}+4 \hat{\jmath}-\hat{k}$ and $-\hat{\imath}+\hat{\jmath}-3 \hat{k}$. (3)
e) Let $Z=2+3 i$, verify $z \bar{Z}=|z|^{2}$.
f) Solve the following system of equations by using Cramer's Rule.
$2 x-4 y+3 z=4, \quad x+y+z=2, \quad 3 x+y-z=2$

Q.3. Answer the following questions.

a) Check whether the vectors $a=2 \hat{\imath}-4 \hat{\jmath}+3 \hat{k}$ and $b=3 \hat{\imath}+6 \hat{\jmath}+6 \hat{k}$ are perpendicular.
b) A solid sphere of radius 5 cm is mounted on a cube of side 9 cm . Find the total volume.
c) Two numbers are such that their ratio is $4: 5$ when 4 is added to the first number and 3 is subtracted from the second one the ratio becomes 4:1. Find the two numbers.
d) Find angle between the two vectors $a=\hat{\imath}-2 \hat{\jmath}+\hat{k}$ and $b=2 \hat{\imath}+\hat{\jmath}-3 \hat{k}$
e) The diameter of a cone is 10 m and its slant height is 13 m . Find its volume.
f) The sum of three numbers is 98 . If the ratio of the first to second is $2: 3$ and that of the second to the third is $5: 8$, then find the three numbers.
Q.4. Answer the following questions.
a) Let $Z_{1}=-3+4 i$ and $Z_{2}=2+5 i$. Verify $Z_{1} Z_{2}=Z_{2} Z_{1}$.
b) Find the three numbers in A.P. whose sum is 27 and product is 585 . (3)
c) Check whether $(2,1),(6,5)$ and $(4,7)$ are the vertices of a right angled triangle.

OR

d) Find $\frac{Z_{1}}{Z_{2}}$ if $Z_{1}=1+i$ and $Z_{2}=1-i$.
e) Find the three numbers in G.P. whose sum is 39 and product is 729. (3)
f) Find the equation of line passing through $(2,1)$ perpendicular to the line through ($-3,-1$) and ($-1,2$).

Q.5. Answer the following questions.

a) Let $f(x)=x^{2}+2$ and $g(x)=\log x$. Find $(f \circ g)(x)$.
b) Let $f(x)=\frac{x^{2}-8 x+16}{x^{2}-16}$, find $\lim _{x \rightarrow 4} f(x)$.
(2)
c) Examine the function $f(x)=x^{2}+4 x$ for maxima or minima.
d) Evaluate $\int_{0}^{1} x^{2}+e^{x}+\frac{1}{x^{2}} d x$.

OR

e) Check whether $f(x)=\left\{\begin{array}{r}x^{2}, \\ -x^{2},\end{array} x>0\right.$ 0 x is continuous.
f) Find $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2}$.
g) Examine the function $f(x)=2 x^{2}-5 x$ for maxima or minima.
h) Evaluate $\int_{0}^{2} \sin x-2^{x} d x$.

