Pg 1 of 2

Goa Vidyaprasarak Mandal's GOPAL GOVIND POY RAITURCAR COLLEGE OF COMMERCE AND ECONOMICS, PONDA-GOA B.C.A. (SEMESTER-I) EXAMINATION, OCTOBER 2017 BCA 104 BASIC MATHEMATICS Duration : 2 hours Marks : 50

Q.1. Fill in the blanks: (10×1=10) a) If $\tan \theta = \frac{5}{12}$, then $\csc \theta =$ ______. b) If $f(x) = 4x^3 - 1$, then $\int_2^3 f(x) dx =$ ______. c) If $y = x \tan x$, then y' =_____. d) Prime factorisation of 880 is ______. e) gcd(210,49) =______. f) $\lim_{x\to 0} \frac{\tan x}{x} =$ _____. g) Let $\log_2 x = 4$, then x =_____. h) In a H.P. $a = \frac{1}{2}$ and $b = \frac{1}{3}$, then $t_4 =$ _____. i) The centre of the circle $x^2 + y^2 - 4x - 7y + 10 = 0$ is _____. j) Let $z_1 = -\sqrt{3} + 3i$ and $z_2 = \sqrt{3} - i$, then $z_1 \overline{z}_2 =$ ____.

Q.2.

a)	Find the area of a triangle	whose sides are	$2\hat{i} + 3\hat{j} - 2\hat{k}$ and 3	$\hat{\iota} - \hat{\jmath} + 2\hat{k}.$	(3)
----	-----------------------------	-----------------	--	--	-----

(2)

(2)

b) Let z = 5 - 2i, verify $z\overline{z} = |z|^2$.

b) Solve the following system of equations by using matrix method (5) 4x - 3y - 11 = 0, 3x + 7y + 1 = 0

OR

			~		~	
1`		erpendicular to $2\hat{\iota}$ –	A 1 01 1	100 0	^ , <u>¬</u>]	$\langle \mathbf{n} \rangle$
) Hind linit vactor na	arnandicular to 11 -	$1 \perp 12$ and	1011 - 7	$1 \perp 1/2$	1 4 1
- U	/ Г'ННЦІ ЦННІ, УССІ.ОЛ ТЛ	c_{1}	$I \pm Z \Lambda$ and	10l - L	$I \pm I \Lambda$.	(.))
					,	$\langle \mathcal{O} \rangle$

e) Use De Moivre's theorem to prove that $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ (2)

f) Solve the following system of equations by using Cramer's Rule. (5) 5x + 2y - 7 = 0, 6x - 5y - 38 = 0

\cap		2	
Y	•	J	٠

- a) Check whether the vectors $a = 3\hat{i} + 2\hat{j} + \hat{k}$ and $b = \hat{i} + \hat{j} + 3\hat{k}$ are perpendicular.
- b) The diameter of a cylinder is 0.4m and height is 10cm. Find its curved surface area, total surface area and volume. (3)
- c) Mother divided the money among Joy Maria and Julie in the ratio
 2:3:5 respectively. If Maria got `150, then find the total amount of money and the money received by Joy and Julie. (5)

OR

d) Find angle between the two vectors $a = -\hat{\iota} + 2\hat{j} + \hat{k}$ and $b = -3\hat{\iota} - 6\hat{j} + \hat{k}$. (2)

- e) The diameter of a cone is 0.9m and its slant height is 5cm. Find its lateral surface area total surface area and volume. (3)
- f) The sum of three numbers is 120. If the ratio of the first to second is 3:4 and that of the first to the third is 3:5, then find the three numbers. (5)

Pg 2 of 2

Q.4.

a) Let $z_1 = -1 + 3i$ and $z_2 = 2 + 3i$. Verify $z_1 z_2 = z_2 z_1$.	(2)			
b) Find the three numbers in G.P. whose sum is 35 and product is 1000.				
c) Check whether (-1,3), (2,5) and (6,-1) are the vertices of a right angled triangle.				
OR				
d) Write $z = \sqrt{3} - i$ in polar form.	(2)			
e) Find the three numbers in A.P. whose sum is 33 and product is 1320.				
f) Check whether the points (-1,5), (-2,7) and (1,6) are collinear.				

Q.5.

a) Let
$$f(x) = \frac{x^2 - 9}{x - 3}$$
 then find $\lim_{x \to 3} f(x)$. (2)

b) Let
$$f(x) = x^2 + 2$$
 and $g(x) = 3x + 2$. Find $(f \circ g)(x)$. (2)

c) Show that $yy'' - y' \cos x + 1 = 0$ if $y = \sin x$ (3)

(3)

d) Evaluate $\int_0^{\pi} \sin 3x + \cos 3x \, dx$.

OR

e) Check whether
$$f(x) = f(x) = \begin{cases} \frac{e^{2x} - e^{3x}}{x} & x \neq 0\\ -1 & x = 0 \end{cases}$$
 is continuous at x=0 (2)

- f) Find $\lim_{x \to 3} \frac{x^3 27}{x 3}$.
- g) If $y = \tan x$ then show that y'' 2yy' = 0 (2) (3)

h) Evaluate
$$\int_0^2 (x^2 - 2^x) dx.$$
 (3)

XXXXXXXXXXXXX