Goa Vidyaprasarak Mandal's
 GOPAL GOVIND POY RAITURCAR COLLEGE OF COMMERCE AND
 ECONOMICS, PONDA-GOA
 B.C.A. (SEMESTER-I) EXAMINATION, OCTOBER 2017
 BCA 104 BASIC MATHEMATICS

Duration : 2 hours

Marks : 50
Q.1. Fill in the blanks:
a) If $\tan \theta=\frac{5}{12}$, then $\operatorname{cosec} \theta=$ \qquad .
b) If $f(x)=4 x^{3}-1$, then $\int_{2}^{3} f(x) d x=$ \qquad -.
c) If $y=x \tan x$, then $y^{\prime}=$ \qquad -.
d) Prime factorisation of 880 is \qquad .
e) $\operatorname{gcd}(210,49)=$ \qquad -.
f) $\lim _{x \rightarrow 0} \frac{\tan x}{x}=$ \qquad .
g) Let $\log _{2} x=4$, then $x=$ \qquad -
h) In a H.P. $a=\frac{1}{2}$ and $b=\frac{1}{3}$, then $t_{4}=$ \qquad $-$
i) The centre of the circle $x^{2}+y^{2}-4 x-7 y+10=0$ is \qquad .
j) Let $z_{1}=-\sqrt{3}+3 i$ and $z_{2}=\sqrt{3}-i$, then $z_{1} \overline{z_{2}}=$ \qquad _.
Q.2.
a) Find the area of a triangle whose sides are $2 \hat{\imath}+3 \hat{\jmath}-2 \hat{k}$ and $3 \hat{\imath}-\hat{\jmath}+2 \hat{k}$.
b) Let $z=5-2 i$, verify $z \bar{z}=|z|^{2}$.
b) Solve the following system of equations by using matrix method $4 x-3 y-11=0,3 x+7 y+1=0$
OR
d) Find unit vector perpendicular to $2 \hat{\imath}-\hat{\jmath}+2 \hat{k}$ and $10 \hat{\imath}-2 \hat{\jmath}+7 \hat{k}$.
e) Use De Moivre's theorem to prove that $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$
f) Solve the following system of equations by using Cramer's Rule.
$5 x+2 y-7=0, \quad 6 x-5 y-38=0$
Q.3.
a) Check whether the vectors $a=3 \hat{\imath}+2 \hat{\jmath}+\hat{k}$ and $b=\hat{\imath}+\hat{\jmath}+3 \hat{k}$ are perpendicular.
b) The diameter of a cylinder is 0.4 m and height is 10 cm . Find its curved surface area, total surface area and volume.
c) Mother divided the money among Joy Maria and Julie in the ratio 2:3:5 respectively. If Maria got ` 150 , then find the total amount of money and the money received by Joy and Julie.

OR
d) Find angle between the two vectors $a=-\hat{\imath}+2 \hat{\jmath}+\hat{k}$ and $b=-3 \hat{\imath}-6 \hat{\jmath}+\hat{k}$.
e) The diameter of a cone is 0.9 m and its slant height is 5 cm .Find its lateral surface area total surface area and volume.
f) The sum of three numbers is 120 . If the ratio of the first to second is $3: 4$ and that of the first to the third is $3: 5$, then find the three numbers.

Pg 2 of 2

Q.4.
a) Let $z_{1}=-1+3 i$ and $z_{2}=2+3 i$. Verify $z_{1} z_{2}=z_{2} z_{1}$.
b) Find the three numbers in G.P. whose sum is 35 and product is 1000 .
c) Check whether $(-1,3),(2,5)$ and $(6,-1)$ are the vertices of a right angled triangle.

OR
d) Write $z=\sqrt{3}-i$ in polar form.
e) Find the three numbers in A.P. whose sum is 33 and product is 1320 .
f) Check whether the points $(-1,5),(-2,7)$ and $(1,6)$ are collinear.
Q.5.
a) Let $f(x)=\frac{x^{2}-9}{x-3}$ then find $\lim _{x \rightarrow 3} f(x)$.
b) Let $f(x)=x^{2}+2$ and $g(x)=3 x+2$. Find $(f o g)(x)$.
c) Show that $\mathrm{y} y^{\prime \prime}-y^{\prime} \cos x+1=0$ if $\mathrm{y}=\sin \mathrm{x}$
d) Evaluate $\int_{0}^{\pi} \sin 3 x+\cos 3 x d x$.

OR

e) Check whether $f(x)=f(x)=\left\{\begin{array}{ll}\frac{e^{2 x}-e^{3 x}}{x} & x \neq 0 \\ -1 & x=0\end{array}\right.$ is continuous at $\mathrm{x}=0$
f) Find $\lim _{x \rightarrow 3} \frac{x^{3}-27}{x-3}$.
g) If $y=\tan x$ then show that $y^{\prime \prime}-2 y y^{\prime}=0$
h) Evaluate $\int_{0}^{2}\left(x^{2}-2^{x}\right) d x$.

