Pg. 1 of 2

Goa Vidyaprasarak Mandal's
 GOPAL GOVIND POY RAITURCAR COLLEGE OF COMMERCE AND ECONOMICS, PONDA-GOA

B.C.A. (SEMESTER-I) EXAMINATION, OCTOBER 2016

BCA 104 BASIC MATHEMATICS
Duration : 2 hours
Q.1. Fill in the blanks:
a) Prime factorisation of 972 is \qquad .
b) If $f(x)=5 x^{2}-2 x$, then $\int_{1}^{2} f(x) d x=$ \qquad .
c) If $\sin \theta=\frac{3}{5}$ and $\cos \theta=\frac{4}{5}$, then $\tan \theta=$ \qquad .
d) If $y=x^{4}-5 x^{2}$, then $y^{\prime}=$ \qquad .
e) $\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}=$ \qquad .
f) $\operatorname{gcd}(68,154)=$ \qquad .
g) Let $\log _{7} 343=$ \qquad .
h) In an A.P. $a=5$ and $d=4$, then $S_{6}=$ \qquad .
i) Let $A=\left[\begin{array}{ccc}1 & -3 & -2 \\ 4 & 0 & 7 \\ 5 & 2 & 8\end{array}\right]$, then $A^{\prime}=$ \qquad .
j) Let $z_{1}=3-4 i$ and $z_{2}=-7+8 i$, then $z_{1}+\bar{z}_{2}=$ \qquad .
Q.2.
a) Find the area of a parallelogram whose adjacent sides are $3 \hat{\imath}+4 \hat{\jmath}-\hat{k}$ and $4 \hat{\imath}-2 \hat{\jmath}+5 \hat{k}$.
b) Use De Moivre's theorem to prove that $\sin 2 \theta=2 \sin \theta \cos \theta$.
c) If $=\left[\begin{array}{cc}5 & 7 \\ 4 & -1\end{array}\right]$, find $4 A^{2}+3 A-2 I$.

OR

d) Find the area of a triangle whose sides are $2 \hat{\imath}+4 \hat{\jmath}+7 \hat{k}$ and $-\hat{\imath}+\hat{\jmath}-3 \hat{k}$.
e) Let $z=2+3 i$, verify $z \bar{z}=|z|^{2}$.
f) Solve the following system of equations by using matrix method.
$3 x-4 y+5 z=0, \quad x+2 y-4 z=0, \quad 7 x+3 y+6 z=0$
Q.3.
a) Check whether the vectors $a=2 \hat{\imath}-4 \hat{\jmath}+3 \hat{k}$ and $b=3 \hat{\imath}+6 \hat{\jmath}+6 \hat{k}$ are perpendicular.
b) Find the area of the dotted region.

c) In a bag, there are coins of $25 \mathrm{p}, 10 \mathrm{p}$ and 5 p in the ratio $1: 2: 3$. If there is ${ }^{`} 30 \mathrm{in}$ all, how many 5 p coins are there?

OR

d) Find angle between the two vectors $a=\hat{\imath}-2 \hat{\jmath}+\hat{k}$ and $b=2 \hat{\imath}+\hat{\jmath}-3 \hat{k}$.
e) The diameter of a cone is 10 m and its slant height is 13 m .Find its volume.
f) The sum of three numbers is 98 . If the ratio of the first to second is $2: 3$ and that of the second to the third is $5: 8$, then find the three numbers.
Q.4.
a) Let $z_{1}=-3+4 i$ and $z_{2}=2+5 i$. Verify $z_{1} z_{2}=z_{2} z_{1}$.
b) Find the three numbers in A.P. whose sum is 27 and product is 585 .
c) Check whether $(2,1),(6,5)$ and $(4,7)$ are the vertices of a right angled triangle.

OR

d) Write $z=2+i$ in polar form.
e) Find the three numbers in G.P. whose sum is 39 and product is 729 .
f) Check whether the points $(-1,1),(-2,0)$ and $(1,2)$ are collinear.
Q.5.
a) Let $f(x)=x^{2}+2$ and $g(x)=\log x$. Find $(f \cdot g)(x)$.
b) Let $f(x)=\frac{x^{2}-8 x+16}{x^{2}-16}$, find $\lim _{x \rightarrow 4} f(x)$.
c) Examine the function $f(x)=x^{2}+2 x$ for maxima or minima.
d) Evaluate $\int_{0}^{1} x^{2}+e^{x}+\frac{1}{x^{2}} d x$.
e) Check whether $f(x)=\left\{\begin{array}{ll}x^{2} & x \leq 0 \\ -x^{2} & x>0\end{array}\right.$ is continuous.
f) Find $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2}$.
g) Examine the function $f(x)=2 x^{2}-5 x$ for maxima or minima.
h) Evaluate $\int_{0}^{2} \sin x-2^{x} d x$.

