Pg.1 of 2

Goa Vidyaprasarak Mandal's **GOPAL GOVIND POY RAITURCAR COLLEGE OF COMMERCE AND ECONOMICS, PONDA-GOA B.C.A. (SEMESTER-I) EXAMINATION, OCTOBER 2016 BCA 104 BASIC MATHEMATICS**

Duration : 2 hours

Marks : 50

Q.1. Fill in the blanks:

 $(10 \times 1 = 10)$

a) Prime factorisation of 972 is _____. b) If $f(x) = 5x^2 - 2x$, then $\int_{1}^{2} f(x)dx =$ _____. c) If $\sin \theta = \frac{3}{5}$ and $\cos \theta = \frac{4}{5}$, then $\tan \theta =$ _____. d) If $y = x^4 - 5x^2$, then y' =_____. e) $\lim_{x \to 0} \frac{a^x - 1}{x} =$ _____. f) gcd(68,154) = . g) Let $\log_7 343 =$ _____. h) In an A.P. a = 5 and d = 4, then $S_6 =$ _____. i) Let $A = \begin{bmatrix} 1 & -3 & -2 \\ 4 & 0 & 7 \\ 5 & 2 & 8 \end{bmatrix}$, then A' =_____. j) Let $z_1 = 3 - 4i$ and $z_2 = -7 + 8i$, then $z_1 + \overline{z_2} =$ _____. Q.2. a) Find the area of a parallelogram whose adjacent sides are $3\hat{\iota} + 4\hat{j} - \hat{k}$ and $4\hat{i} - 2\hat{j} + 5\hat{k}$. (3)b) Use De Moivre's theorem to prove that $sin2\theta = 2sin\theta cos\theta$. (2)c) If $= \begin{bmatrix} 5 & 7 \\ 4 & -1 \end{bmatrix}$, find $4A^2 + 3A - 2I$. (5) OR d) Find the area of a triangle whose sides are $2\hat{i} + 4\hat{j} + 7\hat{k}$ and $-\hat{\iota} + \hat{\jmath} - 3\hat{k}$. (3) e) Let z = 2 + 3i, verify $z\overline{z} = |z|^2$. (2)f) Solve the following system of equations by using matrix method. (5) 3x - 4y + 5z = 0, x + 2y - 4z = 0, 7x + 3y + 6z = 0Q.3. a) Check whether the vectors $a = 2\hat{i} - 4\hat{j} + 3\hat{k}$ and $b = 3\hat{i} + 6\hat{j} + 6\hat{k}$ (2)

- are perpendicular.
- b) Find the area of the dotted region.

(3)

c) In a bag, there are coins of 25p, 10p and 5p in the ratio 1:2:3. If there is `30 in all, how many 5p coins are there?	(5)
d) Find angle between the two vectors $a = \hat{\iota} - 2\hat{j} + \hat{k}$ and $b = 2\hat{\iota} + \hat{j} - 3\hat{k}$.	(2)
e) The diameter of a cone is 10m and its slant height is 13m.Find its volume.	(3)
f) The sum of three numbers is 98. If the ratio of the first to second is 2:3 and that of the second to the third is 5:8, then find the three numbers.	(5)
Q.4. a) Let $z_1 = -3 + 4i$ and $z_2 = 2 + 5i$. Verify $z_1 z_2 = z_2 z_1$.	(2)
b) Find the three numbers in A.P. whose sum is 27 and product is 585.	(3)
c) Check whether (2,1), (6,5) and (4,7) are the vertices of a right angled triangle.	(5)
OR	
d) Write $z = 2 + i$ in polar form.	(2)
e) Find the three numbers in G.P. whose sum is 39 and product is 729.	(3)
f) Check whether the points (-1,1), (-2,0) and (1,2) are collinear.	(5)
Q.5. a) Let $f(x) = x^2 + 2$ and $g(x) = logx$. Find $(f \bullet g)(x)$.	(2)
b) Let $f(x) = \frac{x^2 - 8x + 16}{x^2 - 16}$, find $\lim_{x \to 4} f(x)$.	(2)
c) Examine the function $f(x) = x^2 + 2x$ for maxima or minima.	(3)
d) Evaluate $\int_0^1 x^2 + e^x + \frac{1}{x^2} dx$.	(3)
e) Check whether $f(x) = \begin{cases} x^2 & x \le 0 \\ -x^2 & x > 0 \end{cases}$ is continuous.	(2)
f) Find $\lim_{x \to 2} \frac{x^3 - 8}{x - 2}$.	(2)
g) Examine the function $f(x) = 2x^2 - 5x$ for maxima or minima.	(3)
h) Evaluate $\int_0^2 \sin x - 2^x dx$.	(3)

XXXXXXXXXXXX