Page 1 of 3

Goa Vidyaprasarak Mandal's GOPAL GOVIND POY RAITURCAR COLLEGE OF COMMERCE AND ECONOMICS, PONDA-GOA

B.C.A (SEMESTER-I) EXAMINATION, OCTOBER 2015 BCA 104 BASIC MATHEMATICS

Duration : 2 hours	Marks: 50
Q.1 Fill in the blanks:	(10x1 = 10)
a) $(\log_b a)(\log_a b) = \dots$ where, $a > 1, b > 1$	
b) If $5^{a} = 625$ then, $a = \dots$	
c) Area of a circle of radius $r cm'$ is given by cm^2	
d) If a, b, c are in arithmetic progression, then $b = \dots$	
e) Let $z = 3 + 4i$, then $\overline{z} = \dots$	
f) If $f(x) = x^{a}$, then $f(\log x) =$	
g) If 4:7:: x :35, then $x = \dots$,	
h) The factors of $x^2 + 3x + 2$ are and	
i) The greatest common divisor (g.c.d) of 37 and 249 is	
j) If $\log_2 128 = x$, then $x = \dots$	
Q.2	
A. Prove that the vectors $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + \hat{j} + 3\hat{k}$ are pereach other.	rpendicular to (2)

- B. Find the length of the canvas 2 metres in width required to make a conical tent 8 meters in diameter & 5.6 metres in slant height. (3)
- C. Without actual expansion as far as possible prove the following (5)

$$\begin{vmatrix} 1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2} \end{vmatrix} = (x - y)(y - z)(z - x)$$

Q.II

- a. Find the area of the parallelogram whose adjacent sides are given by vectors $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}_{and}$ $\vec{b} = 3\hat{i} - 2\hat{j} + \hat{k}$ (2)
- b. The side of a square field is 89 metres. By how much square metre does its area fall short of hectare?
 (Given: A hectare = 10000mt²)
- c. Solve the following system of equations by using matrix method (5) 5x + 3y + z = 16

$$2x + y + 3z = 19$$

$$x + 2y + 4z = 25$$

Q.3

- A. Find $\vec{a} \times \vec{b}$ if $\vec{a} = 2\hat{\imath} + 3\hat{\jmath} + 6\hat{k}$ and $\vec{b} = 3\hat{\imath} 6\hat{\jmath} + 2$ (2)
- B. Find the sum of all the numbers between 100 and 400 which are exactly divisible by 3.(3)
- C. Evaluate the following limit

$$\lim_{\chi \to 2} \left[\frac{1}{\chi^2 + \chi - 6} + \frac{1}{\chi^2 - 9\chi + 14} \right]$$
(5)

OR

Q.III

- a. Find a unit vector perpendicular to both the vectors $\vec{a} = 4\hat{\imath} \hat{\jmath} + 3\hat{k}$
 - and $\vec{b} = -2\hat{\imath} + \hat{\jmath} 2\hat{k}$ (2)
- b. If *a*, *b*, *c* are in A.P, prove that

$3a^2 - 4b^2 + c^2 = 2a(a - c) \tag{3}$

c. Discuss the continuity of the following function at the point indicated

$$f(x) = \begin{cases} \sin x & , 0 \le x \le \pi/_4 \\ \tan x & , \pi/_4 < x \le \pi/_2 \\ \cos x & , \pi/_2 < x \le 3\pi/_4 \end{cases}$$

At $x = \pi/_4$ and $x = \pi/_2$ (5)

A. Using trigonometry, prove the identity	(3)
---	-----

$$\sin 2\theta = \frac{2\tan\theta}{1+\tan^2\theta}$$

B. Use De Moivre's theorem to prove the following (3)

$$\sin 2\theta = 2\sin\theta\cos\theta$$

C. Find m and n if (m, n + 1) divides segment AB externally in the ratio 2:1 where A= (-3,1) and B=(-6,7) (4) OR

Q.IV

- a. Using trigonometry, prove the following identity (3) $\cos 2\theta = 1 - 2\sin^2 \theta$
- b. Use De Moivre's theorem to prove the following (3) $\cos 3\theta = 4\cos^2\theta - 3\cos\theta$
- c. Find the equation of the line through the point of intersection of

x + 2y - 4 = 0, x - 3y + 1 = 0 and also through the mid-point of the segment joining (2,5) and (4,3) (4)

Q.5

A. If
$$f(x) = a \operatorname{sin}(\log x)$$
, prove that
 $x^{\dagger} 2 f''(x) + x f'(x) + f(x) = 0$
(5)

B. Evaluate $\int_{0}^{\log x} \frac{e^x}{1+e^x} dx$ OR

Q.V

- a. Show that $f(x) = x^2 9x^2 + 30x + 5$ has neither maxima nor Minima. (3)
- b. Differentiate $y = (x^2 3x + 5)^{10}$ with respect to x (2)
- c. Prove that the area bounded by the curve $y = x^2 3x$ and the line y = 2x is $\frac{125}{6}$ square units (5)

XXXXXXXXXXXXX

Q.4