Goa Vidyaprasarak Mandal's
 GOPAL GOVIND POY RAITURCAR COLLEGE OF COMMERCE AND ECONOMICS, PONDA-GOA

B.C.A (SEMESTER-I) EXAMINATION, OCTOBER 2015
 BCA 104 BASIC MATHEMATICS

Duration : 2 hours
Q. 1 Fill in the blanks:
a) $\left(\log _{b} a\right)\left(\log _{a} b\right)=\ldots \ldots \ldots .$. where, $a>1, b>1$
b) If $5^{\mathrm{a}}=625$ then, $a=$ \qquad
c) Area of a circle of radius ${ }^{~} \mathrm{r} \mathrm{cm}^{I}$ is given by \qquad cm^{2}
d) If a, b, c are in arithmetic progression, then $\mathrm{b}=$ \qquad
e) Let $Z=3+4 i$, then $\bar{z}=$ \qquad
f) If $f(x)=x^{3}$, then $f(\log x)=$ \qquad
g) If $4: 7::^{x}: 35$, then $x=$ \qquad
h) The factors of $x^{2}+3 x+2$ are \qquad and
i) The greatest common divisor (g.c.d) of 37 and 249 is \qquad
j) If $\log _{2} 128=\mathrm{x}$, then $x=$ \qquad
Q. 2
A. Prove that the vectors $\vec{a}=\hat{\imath}+2 \hat{\jmath}+\hat{k}$ and $\vec{b}=\hat{\imath}+\hat{\jmath}+3 \hat{k}$ are perpendicular to each other.
B. Find the length of the canvas 2 metres in width required to make a conical tent 8 meters in diameter \& 5.6 metres in slant height.
C. Without actual expansion as far as possible prove the following

$$
\left|\begin{array}{lll}
1 & x & x^{z} \tag{5}\\
1 & y & y^{2} \\
1 & z & z^{2}
\end{array}\right|=(x-y)(y-z)(z-x)
$$

Q.II
a. Find the area of the parallelogram whose adjacent sides are given by vectors $\vec{a}=\hat{\imath}-2 \hat{\jmath}+3 \hat{k}$ and $\vec{b}=3 \hat{\imath}-2 \hat{\jmath}+\hat{k}$
b. The side of a square field is 89 metres. By how much square metre does its area fall short of hectare?
$\left(\right.$ Given: A hectare $\left.=10000 m t^{2}\right)$
c. Solve the following system of equations by using matrix method
$5 x+3 y+z=16$
$2 x+y+3 z=19$
$x+2 y+4 z=25$
Q. 3
A. Find $\vec{a} \times \vec{b}$ if $\vec{a}=2 \hat{l}+3 \hat{\jmath}+6 \hat{k}$ and $\vec{b}=3 \hat{\imath}-6 \hat{\jmath}+2$
B. Find the sum of all the numbers between 100 and 400 which are exactly divisible by 3 .
C. Evaluate the following limit

$$
\begin{equation*}
\lim _{x \rightarrow 2}\left[\frac{1}{x^{2}+x-6}+\frac{1}{x^{2}-9 x+14}\right] \tag{5}
\end{equation*}
$$

OR

Q.III
a. Find a unit vector perpendicular to both the vectors $\vec{a}=4 \hat{l}-\hat{\jmath}+3 \hat{k}$

$$
\begin{equation*}
\text { and } \vec{b}=-2 \hat{l}+\hat{\jmath}-2 \hat{k} \tag{2}
\end{equation*}
$$

b. If a, b, c are in A.P, prove that

$$
\begin{equation*}
3 a^{2}-4 b^{2}+c^{2}=2 a(a-c) \tag{3}
\end{equation*}
$$

c. Discuss the continuity of the following function at the point indicated

$$
\begin{align*}
& f(x)= \begin{cases}\sin x & , 0 \leq x \leq \pi / 4 \\
\tan x & , \pi / 4<x \leq \pi / 2 \\
\cos x & , \pi / 2<x \leq \pi / 4\end{cases} \\
& \text { At } x=\pi / 4 \text { and } x=\pi / 2 \tag{5}
\end{align*}
$$

Q. 4
A. Using trigonometry, prove the identity

$$
\begin{equation*}
\sin 2 \theta=\frac{2 \tan _{\mathrm{n}} \theta}{1+\tan ^{2} \theta} \tag{3}
\end{equation*}
$$

B. Use De Moivre's theorem to prove the following

$$
\begin{equation*}
\sin 2 \theta=2 \sin \theta \cos \theta \tag{3}
\end{equation*}
$$

C. Find m and n if $(m, n+1)$ divides segment AB externally in the ratio $2: 1$ where $\mathrm{A}=(-3,1)$ and $\mathrm{B}=(-6,7)$ OR
Q.IV
a. Using trigonometry, prove the following identity $\cos 2 \theta=1-2 \sin ^{2} \theta$
b. Use De Moivre's theorem to prove the following
$\operatorname{Cos} 3 \theta=4 \operatorname{COs}^{3} \theta-3 \operatorname{Cos} \theta$
c. Find the equation of the line through the point of intersection of $x+2 y-4=0, x-3 y+1=0$ and also through the mid-point of the segment joining $(2,5)$ and $(4,3)$
Q. 5
A. If $f(x)=a \sin \left(\log _{g} x\right)$, prove that $x^{\top} 2 f^{\prime \prime}(x)+x f^{\prime}(x)+f(x)=0$
B. Evaluate $\int_{0}^{\log a} \frac{e^{x}}{1+e^{x}} d x$ OR
Q.V
a. Show that $f(x)=x^{2}-9 x^{2}+30 x+5$ has neither maxima nor Minima.
b. Differentiate $y=\left(x^{2}-3 x+5\right)^{10}$ with respect to x
c. Prove that the area bounded by the curve $y=x^{2}-3 x$ and the line $y=2 x$ is $\frac{125}{6}$ square units

