Pg 1 of 2

Goa Vidyaprasarak Mandal's
 GOPAL GOVIND POY RAITURCAR COLLEGE OF COMMERCE AND ECONOMICS, PONDA-GOA
 B.C.A. (SEMESTER-I) SUPPLEMENTARY EXAMINATION, MAY/JUNE 2018 BCA 104 BASIC MATHEMATICS

Q.1. Fill in the blanks:
a) If $\cos \theta=\frac{5}{12}$, then $\cot \theta=$ \qquad .
b) If $f(x)=\sec ^{2} 2 x$, then $\int_{0}^{\pi} f(x) d x=$ \qquad .
c) If $y=x e^{2 x}$, then $y^{\prime}=$ \qquad .
d) Prime factorization of 760 is \qquad .
e) $\operatorname{LCM}(255,60)=$ \qquad .
f) $\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{x}=$ \qquad .
g) Let $\log _{10} x=2$, then $x=$ \qquad .
h) In a A.P. $a=10$ and $d=2$, then $T_{17}=$ \qquad .
i) The center of the circle $x^{2}+y^{2}-8 x+10 y-17=0$ is \qquad -.
j) Let $z_{1}=2+3 i$ and $z_{2}=3-2 i$, then $z_{1} \bar{z}_{2}=$ \qquad .
Q.2.
a) Find the area of a parallelogram whose adjacent sides are $\hat{\imath}+2 \hat{\jmath}+2 \hat{k}$ and $\hat{\imath}+\hat{\jmath}+2 \hat{k}$
b) Solve the following system of equations by using matrix method
$2 x+y-5=0, \quad 5 x-2 y-8=0$
c) If $\log _{10} y+\log _{10}(y-3)=1$ then find the value of y

OR
d) Find unit vector perpendicular to $2 \hat{\imath}-\hat{\jmath}+\widehat{k}$ and $3 \hat{\imath}+4 \hat{\jmath}-\hat{k}$.
e) Solve the following system of equations by using Cramer's Rule $x+2 y-8=0, \quad x-3 y+7=0$
f) Use De Moivre's theorem to prove that $\sin 2 \theta=2 \sin \theta \cos \theta$
Q.3.
a) Check whether the vectors $a=\hat{\imath}+\hat{\jmath}+\hat{k}$ and $b=3 \hat{\imath}-2 \hat{\jmath}-\hat{k}$ are perpendicular.
b) The diameter of a cylinder is 20 cm and height is half its radius. Find its total surface area and volume.
c) If ` 370 is divided into three parts such that second part is $1 / 4{ }^{\text {th }}$ of the third part and the ratio between the first and the third part is $3: 5$. Then find each part. (5)

OR
d) Find angle between the two vectors $a=\hat{\imath}+\hat{\jmath}-3 \hat{k}$ and $b=7 \hat{\imath}-4 \hat{\jmath}+\hat{k}$.
e) The diameter of a cone is 9 m and its slant height is 5 m . Find its total surface area and volume.
f) The sum of three numbers is 34 . If the ratio of the first to second is $3: 4$ and that of the first to the third is $2: 5$, then find the three numbers.
Q.4.
a) If $z_{1}=3+5 i$ and $z_{2}=2+3 i$. Then show that $\overline{z_{1} \cdot \overline{z_{2}}}=\overline{z_{1}} z_{2}$
b) Find the three numbers in G.P. whose sum is 49 and product is 2744 .
c) Check whether $(3,-1),(-1,2)$ and $(2,6)$ are the vertices of a right angled triangle.

OR

d) Find the cube roots of unity.
e) Find the three numbers in A.P. whose sum is 45 and product is 3315.
f) Check whether the $(3,8),(5,4)$ and $(8,-2)$ are collinear.
Q.5.
a) Let $f(x)=\frac{x^{3}-8}{x-2}$ then find $\lim _{x \rightarrow 2} f(x)$.
b) Let $f(x)=\sec x$ and $g(x)=x^{2}+2 x-1$. Find ($\left.g \circ f\right)(x)$.
c) Show that $x^{2} y^{\prime \prime}-x y^{\prime}=0$ if $\mathrm{y}=\log x$
d) Evaluate $\int_{0}^{2} \frac{x^{2}+2 x}{x^{3}+3 x^{2}+12} d x$.

OR

e) Check whether $f(x)=f(x)=\left\{\begin{aligned} & \frac{\tan 3 x-\sin 2 x}{x} x \neq 0 \\ & 1 \quad x=0\end{aligned}\right.$ is continuous at $\mathrm{x}=0(2)$
f) Find $\lim _{x \rightarrow 3} \frac{x^{2}-6 x+9}{x-3}$.
g) If $y=\cos x$ then show that $y^{\prime \prime}+y=0$
h) Evaluate $\int_{0}^{2}\left(e^{3 x}-3^{x}\right) d x$.

