Goa Vidyaprasarak Mandal's
 GOPAL GOVIND POY RAITURCAR COLLEGE OF COMMERCE AND
 ECONOMICS, PONDA-GOA
 B.C.A. (SEMESTER-I) SUPPLEMENTARY EXAMINATION
 MAY/JUNE 2017
 BCA 104 BASIC MATHEMATICS

Duration : 2 hours
Q.1. Fill in the blanks:
a) If $\sin \theta=\frac{5}{13}$, then $\cos \theta=$ \qquad .
b) If $f(x)=x^{4}+x$, then $\int_{2}^{3} f(x) d x=$ \qquad _.
c) If $y=x \log x$, then $y^{\prime}=$ \qquad .
d) Prime factorisation of 900 is \qquad .
e) $\operatorname{lcm}(186,54)=$ \qquad _.
f) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=$ \qquad .
g) Let $\log _{3} x=5$, then $x=$ \qquad -
h) In a G.P. $a=3$ and $r=2$, then $S_{6}=$ \qquad _.
i) The centre of the circle $x^{2}+y^{2}+6 x-8 y+10=0$ is \qquad .
j) Let $z_{1}=-2+3 i$ and $z_{2}=7-8 i$, then $z_{1} \overline{z_{2}}=$ \qquad .
Q.2.
a) Find the area of a parallelogram whose adjacent sides are $\hat{\imath}-2 \hat{\jmath}+3 \hat{k}$ and $\hat{\imath}-4 \hat{\jmath}+5 \hat{k}$.
b) Use De Moivre's theorem to prove that $\cos 2 \theta=2 \cos ^{2} \theta-1$.
c) Solve the following system of equations by using matrix method

$$
\begin{equation*}
3 x-4 y+5=0, \quad 7 x+3 y+6=0 \tag{5}
\end{equation*}
$$

OR
d) Find unit vector perpendicular to $\hat{\imath}-3 \hat{\jmath}+2 \hat{k}$ and $-\hat{\imath}+2 \hat{\jmath}-3 \hat{k}$.
e) Let $z=3-2 i$, verify $z \bar{z}=|z|^{2}$.
f) Solve the following system of equations by using Cramer's Rule.
$3 x-4 y-8=0, \quad x-6 y-4=0$
Q.3.
a) Check whether the vectors $a=3 \hat{\imath}-3 \hat{\jmath}-5 \hat{k}$ and $b=\hat{\imath}+6 \hat{\jmath}-3 \hat{k}$ are perpendicular.
b) The diameter of a cylinder is 4 cm and height is 10 cm . Find its lateral surface area, total surface area and volume.
c) In a bag, there are coins of $25 \mathrm{p}, 10 \mathrm{p}$ and 5 p in the ratio $1: 2: 3$. If there is ${ }^{`} 30 \mathrm{in}$ all, how many 10 p coins are there?

OR
d) Find angle between the two vectors $a=-\hat{\imath}+2 \hat{\jmath}+\hat{k}$ and $b=-3 \hat{\imath}-6 \hat{\jmath}+\hat{k}$.

Pg 2 of 2

e) The diameter of a cone is 9 m and its slant height is 5 m . Find its total surface area.
f) The sum of three numbers is 98 . If the ratio of the first to second is $5: 8$ and that of the first to the third is $3: 2$, then find the three numbers.
Q.4.
a) Let $z_{1}=-3+4 i$ and $z_{2}=2+5 i$. Verify $z_{1} z_{2}=z_{2} z_{1}$.
b) Find the three numbers in A.P. whose sum is 39 and product is 1560 .
c) Check whether $(2,1),(6,5)$ and $(4,7)$ are the vertices of a right angled triangle.

OR

d) Write $z=\sqrt{3}+i$ in polar form.
e) Find the three numbers in G.P. whose sum is 78 and product is 5832 .
f) Check whether the points $(-1,5),(-2,7)$ and $(1,6)$ are collinear.
Q.5.
a) Let $f(x)=e^{x}$ and $g(x)=\log x$. Find $(f \cdot g)(x)$.
b) Let $f(x)=\frac{x^{2}-6 x+9}{x^{2}-9}$, find $\lim _{x \rightarrow 3} f(x)$.
c) Examine the function $f(x)=x^{2}-6 x$ for maxima or minima.
d) Evaluate $\int_{0}^{1} 2 x^{2}+\sin x d x$.
e) Check whether $f(x)=\left\{\begin{array}{ll}x^{2} & x \leq 2 \\ -x^{2} & x>2\end{array}\right.$ is continuous.
f) Find $\lim _{x \rightarrow 3} \frac{x^{3}-27}{x-3}$.
g) Examine the function $f(x)=3 x^{3}-x$ for maxima or minima.
h) Evaluate $\int_{0}^{2} \sin x-2^{x} d x$.

