GVM's GGPR College of Commerce \& Economics, Farmagudi- Ponda, Goa.

B.C.A. (Semester II) Intra Semester Assessment (ISA) I- Test, January 2020

APPLIED MATHEMATICS
Duration: 45 minutes
Marks: 20

Answer ANY 4 of the following:

Q1.] If $X=\{1,2,3, \ldots \ldots . ., 15\}$ is the universal set, $A=\{1,3,5,8,9,10,12,15\}$
$B=\{2,3,4,6,8,9,10,11,13\} C=\{1,2,5,8,9,14\}$ Verify De-Morgan's law \& Distributive laws.

Q2.] If X is the universal set and $\mathrm{A} \& \mathrm{~B}$ are subset of X such that $n(X)=99, n\left(A^{\mathrm{C}}\right)=80$, $n\left(B^{C}\right)=85$ and $n\left[(A \cap B)^{C}\right]=94$. Find $n(A \cup B)$.

Q3.] If $f(x)=x^{2}+3 x-5,0 \leq \mathrm{x} \leq 6$ find $f(0), f(2), f(4), f(7)$, whenever they exist also find x if $f(x)=35$.

Q4.] Find $f\{g(x)\} \& g\{f(x)\}$ if
a) $f(x)=x^{2}$

$$
g(x)=5 x-6
$$

b) $f(x)=x^{2}+4$
$\mathrm{g}(\mathrm{x})=\frac{1}{x}$

Q5.] Define an Equivalence Relation. Let $A=\{x \mid x<4, x \in I N\}$. A relation R on the set A is given by $\mathrm{R}=\{(1,1),(1,2)(2,1)(2,3)(3,2)\}$ prove that R is symmetric relation but it is neither reflexive nor transitive.

Q6.] Prove that the relation R on the set of integer \mathbb{z} defined as $R=\{(x, y) \mid x-y$ is divisible by $3, x \in \mathbb{Z}, y \in \mathbb{Z}\}$ is an equivalence relation.

