GVM's GGPR College of Commerce & Economics, Farmagudi- Ponda, Goa.

B.C.A. (Semester II) Intra Semester Assessment (ISA) I- Test, January 2020

APPLIED MATHEMATICS

Duration: 45 minutes Marks: 20

Answer ANY 4 of the following:

 $(4 \times 5 = 20)$

- **Q1.**] If $X=\{1,2,3,...,15\}$ is the universal set, $A=\{1,3,5,8,9,10,12,15\}$ $B=\{2,3,4,6,8,9,10,11,13\}$ $C=\{1,2,5,8,9,14\}$ Verify De-Morgan's law & Distributive laws.
- **Q2.**] If X is the universal set and A & B are subset of X such that n(X)=99, $n(A^{C})=80$, $n(B^{C})=85$ and $n[(A \cap B)^{C}]=94$. Find $n(A \cup B)$.
- **Q3.**] If $f(x) = x^2 + 3x 5$, $0 \le x \le 6$ find f(0), f(2), f(4), f(7), whenever they exist also find x if f(x)=35.
- **Q4.**] Find $f\{g(x)\}$ & $g\{f(x)\}$ if
 - a) $f(x) = x^2$

$$g(x) = 5x-6$$

- b) $f(x)=x^2+4$
- $g(x) = \frac{1}{x}$
- **Q5.**] Define an Equivalence Relation. Let $A=\{x| x<4, x\in IN\}$. A relation R on the set A is given by $R=\{(1,1,)(1,2)(2,1)(2,3)(3,2)\}$ prove that R is symmetric relation but it is neither reflexive nor transitive.
- **Q6.**] Prove that the relation R on the set of integer \mathbb{Z} defined as $R = \{(x, y) | x y \text{ is divisible by } 3, x \in \mathbb{Z}, y \in \mathbb{Z}\}$ is an equivalence relation.
