Pg 1 of 3
 GOPAL GOVIND POY RAITURCAR COLLEGE OF COMMERCE AND ECONOMICS, PONDA GOA B.COM (SEMESTER-IV) EXAMINATION, APRIL 2015 STATISTICAL TECHNIQUES

Duration: 2 hours

Marks: 80

INSTRUCTIONS:

1. All questions are compulsory.

Q1. a) Explain the concept and utility of measuring correlation between two variables.
b) The variable x and y are negatively correlated. The regression equation of x on y is $32 x+10 y+3=0$ and that of y on x is $5 x+y+15=0$. Find the coefficient of correlation.
c) Compute rank correlation from the following data.

Student	$:$	1	2	3	4	5	6	7
8								
Marks in Maths	$:$	42	37	28	51	56	40	25
61								
Marks in Statistics $: 45$	30	10	35	46	55	58	70	

OR

Q1 x) Explain the concept of 'regression'. How does it differ from correlation.
y) The regression equation of $\operatorname{profit}(x)$ on sales (y) of a certain firm is $3 y-5 x-108=0$. The average sales of firm was ` 44,000 and the variance of the profit was $9 / 16$ th of the variance of sales. Find the coefficient of correlation between sales and profit.
z) For a bivariate data,
$N=10, \quad \sum \mathrm{x}=20, \quad \sum \mathrm{y}=40, \quad \sum \mathrm{xy}=75, \quad \sum \mathrm{x}^{2}=58, \quad \sum \mathrm{y}^{2}=192$
Calculate coefficient of correlation.

Q 2 a) What are random experiments. Write any two exlusive events of a sample space.
b) The watches produced by a certain firm include only one defective watch in every 500 watches, 5 packs of 25 watches each are considered. Find the probability that in 5 packets, there is i) At least one defective watch
ii) More than 2 defective watches

$$
\text { (Given:- } \mathrm{e}^{-0.25}=0.7788, \mathrm{e}^{-0.4}=0.6703, \mathrm{e}^{-2.5}=0.0821 \text {) }
$$

c) Fit a trend line for the following data hence estimate the sales in 2015.

Year: $2008 \quad 2009 \quad 2010 \quad 2011 \quad 2012 \quad 2013 \quad 2014$
Sales: $\begin{array}{llllllll}10 & 14 & 17 & 20 & 26 & 25 & 32\end{array}$
(lakhs `)

OR

Q 2. x) Define the terms: 1) Sample space
2) Mutually exclusive events
y) There are 100 students in a class. 50 pass in Mathematics, 40 in Economics and 10 in both If a student is selected at random, what is the probability that he has passed in
i) At least one subject
ii) Only one subject.
z) A man draws 2 balls from a bag containing 3 white and 5 black balls. If he is to receive `14 for every white ball and` 7 for every black ball drawn. What is his expectation?
Q.3. a) Calculate the value of Q_{1} and Q_{3} if mean of normal variate 15 and standard deviation is 2 .
b) The odds in favour of A winning a game of chess against B are 5:2, if three games are played, what is the probability of A's winning at least one game.
c) The mean weight of 50 students is 45 kg with a standard deviation of 15 kg . Assuming distribution of weight to be normal, find
i) the number of students with weight between 30 kg and 60 kg ,
ii) the probability of students with weight more than 60 kg .
(Area under the standard normal curve between $t=0$ to $t=1$ is 0.3413)

OR

Q.3. x) For a Binomial distribution mean $=3$ and variance $=1.5$. Find n and p.
y) A large consignment of tennis balls is assumed to have 20% substandard balls. A samples of 400 balls selected from it. Find the probability that $\%$ of substandard balls in the sample is i) at most 16%, ii) at least 22%.
(Area under the standard normal curve between $t=0$ to $t=2$ is 0.4772 and

$$
\begin{equation*}
\text { between } \mathrm{t}=0 \text { to } \mathrm{t}=1 \text { is } 0.3413 \text {). } \tag{6}
\end{equation*}
$$

z) The height of a group of 2000 students is normally distributed with mean 165 cms and standard deviation 5 cms . How many students have height of 171 cms ? (Area under the standard normal curve between $t=0$ to $t=1.2$ is 0.3849)
Q.4. a) Write short note sampling methods.
b) A school wishes to estimate the average weight of students. A random sample of 25 students is selected. The average is found to be 40 kg with standard deviation of 5 kg . Find 95% and 99% confidence intervals.
c) A automatic can-filling machine on an average, fills 180 ml of milk with a standard deviation of 2 ml . Find the probability that the average volume of milk filled in 100 cans from a lot is i) less than 179.9 ml ii) more than 180.1 ml .
(Area under standard normal curve between $t=0$ to $t=0.5$ is 0.1915)

OR

Q. 4. x$)$ Explain the terms estimate and estimator.
y) The probability that an individual suffers bad reactions from a particular injection is 0.01 . Find the probability that out of 500 individuals
i) exactly 2 suffer the reaction
ii) more than 2 will suffer the reaction.
(Given:- $\mathrm{e}^{-5}=0.0067, \mathrm{e}^{-0.5}=0.6065$)
z) A test of breaking strength of 6 ropes manufactured by a company showed mean breaking strength of 750 kg . and standard deviation of 20 kg . Find 95% confidence limits for the mean breaking strength of the rope manufactured by company.
Q.5. a) Explain the terms i) Type I error
ii) Level of significance
b) The height of 10 students selected at random, had a mean height of 158 cms and variance of 39 cms . Assuming level of significance of 5%, test the claim that the students of the population are on the average of height less than 162.5 cms .
c) The probability mass function of a random variable x is

$$
\begin{align*}
\mathrm{P}(\mathrm{x}) & =1 / 2 & & \text { when when } \mathrm{x}=2 \\
& =3 / 10 & & \text { when } \mathrm{x}=5 \\
& =1 / 5 & & \text { when } \mathrm{x}=6 \\
& =0 & & \text { otherwise. } \tag{6}
\end{align*}
$$

Find i) $\mathrm{P}(\mathrm{x}$ is even $)$, ii) $\mathrm{P}(\mathrm{x}>3)$.

OR

Q. 5. x) Write any five properties of Normal curve.
y) A random sample of 400 iron rods indicated that the average length of rod is 10 cms . Can this be regarded as a sample from a large population with a mean of 10.2 cms and standard deviation of 2.25 cms at 1% L.O.S. ?
z) It is observed that 30% of students in a class are swimmers. If 3 students are selected at random from this class, what is the chance that only one of them is a swimmer?

